
Session 4: λ-expressions, list patterns, and
comprehensions
COMP2221: Functional programming

Lawrence Mitchell*

*lawrence.mitchell@durham.ac.uk

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 1

Recap

• Saw how Haskell implements polymorphism through generic
functions

-- length operates on a list of any type a
-- and returns an Int
length :: [a] -> Int

• Saw how overloading works with class constraints and type
classes

-- sort sorts any list of things of type a,
-- as long as that type is orderable
sort :: Ord a => [a] -> [a]

• ⇒ will go over this again when we see user data types.
• Recapitulated currying and the idea of functionals (functions
that return other functions).

• Saw special syntax for calling binary functions
foo :: [a] -> [a]
foo a b = ...
-- These two forms are equivalent
-- 1. foo x y
-- 2. x `foo` y

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 2

Lambda expressions

Nameless functions

• As well as giving functions names, we can also construct them
without names using lambda expressions
-- The nameless function that takes
-- a number x and returns x + x
\x -> x + x

• Use of λ for nameless functions comes from lambda calculus,
which is a theory of functions.

• There is a whole formal system on reasoning about computation
using λ calculus (developed by Alonzo Church in the 1930s)⇒ a
different course

• It is also a way of formalising the idea of lazy evaluation (on
which more later)

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 3

Use cases for unnamed functions I

• Formalises idea of functions defined using currying
add x y = x + y
-- Equivalently
add = \x -> (\y -> x + y)

• The latter form emphasises the idea that add is a function of one
variable that returns a function

• Also useful when returning a function as a result
const :: a -> b -> a
const x _ = x
-- Or, perhaps more naturally
const x = _ -> x

“const eats an a and returns a function which eats a b and
always returns the same a.”

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 4

Use cases for unnamed functions II

• What good is a function which always returns the same value?
• Often when using higher-order functions, we need a base case
that always returns the same value.
length' :: [a] -> Int
length' xs = sum (map (const 1) xs)

“The length of a list can be obtained by summing the result of
calling const 1 on every item in the list”

• We will see some more of this when we look at higher order
functions.

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 5

Use cases for unnamed functions III

• Also useful where the function is only used once
-- Generate the first n positive odd numbers
odds :: Int -> [Int]
odds n = map f [0..n-1]

where
f x = x*2 + 1

• Can be simplified (removing the where clause)
odds :: Int -> [Int]
odds n = map (\x -> x*2 + 1) [0..n-1]

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 6

Translating between the two forms

• It is always possible to translate between named functions and
arguments, and the approach using λ expressions of one
argument

• Just move the arguments to the right hand side and put it inside
a λ, repeat with remainder until you’re done.

f a b c = ...
-- Move formal arguments to right hand side with a lambda
f = \a b c -> ...
-- move remaining arguments into new lambdas
f = \a -> (\b -> (\c -> ...))

• Which option fits more naturally is often a style choice
• Pattern matching is supported in the argument list in exactly the
same way as normal functions

head = \(x:_) -> x

• I sometimes find it easier to think about composing functions or
currying by explicitly writing λ expressions

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 7

Building block summary

• Prerequisites: none

• Content

• Introduce the idea of anonymous, or nameless functions
• Saw syntax for these λ expressions
• And how they can formalise (or make it easier to read) curried functions:

add x y = x + y
-- vs
add = \x -> (\y -> x + y)

• Expected learning outcomes

• student knows about anonymous functions
• student can use λ expressions when defining functions
• student can translate between λ expressions and “normal” function syntax.
• student can describe connection between λ expressions and currying.

• Self-study

• Write the curry and uncurry functions with a λ.
curry :: ((a, b) -> c) -> a -> b -> c
uncurry :: (a -> b -> c) -> (a, b) -> c

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 8

Lists: patterns matching

Representation of lists

• Every non-empty list is created by repeated use of the (:)

operator “construct” that adds an element to the start of a list
[1, 2, 3, 4] = 1 : (2 : (3 : (4 : [])))

• This is a representation of a linked list
• Operations on lists such as indexing, or computing the length
must therefore traverse the list.

⇒ Operations such reverse, length, (!!) are linear in the length of
the list.

• Getting the head and tail is constant time, as is (:) itself.

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 9

Pattern matching on lists

• lists can be used for pattern matching in function definitions
startsWithA :: [Char] -> Bool
startsWithA ['a', _, _] = True
startsWithA _ = False

• Matches 3-element lists and checks if the first entry is the
character 'a'.

Careful
Use patterns in the equations defining a function. Not in the type
of the function.

Pattern matches in the equations don’t change the type of the
function. They just say how it should act on particular expressions.

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 10

Pattern matching on lists

• How match 'a' and not care how long the list is?
• Can’t use literal list syntax. Instead, use list constructor syntax
for matching.

startsWithA :: [Char] -> Bool
startsWithA ('a':_) = True
startsWithA _ = False

• ('a':_) matches any list of length at least 1 whose first entry is
'a'.

• The wildcard match _ matches anything else.
• This works to match multiple entries too:

startsWithAB :: [Char] -> Bool
startsWithAB ('a':'b':_) = True
startsWithAB _ = False

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 11

Binding variables in pattern matching

• As well as matching literal values, we can also match a (list)
pattern, and bind the values.

sumTwo :: Num a => [a] -> a
sumTwo (x:y:_) = x + y

• Match lists of length at least two and sum their first two entries

Example
sumTwo [1, 2, 3, 4]
-- introduces the bindings
x = 1
y = 2
_ = [3, 4]

• Reminder: can’t repeat variable names in bindings (exception _)
-- Not allowed
sumThree (a:a:b:_) = a + a + b
-- Allowed
second (_:a:_) = a

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 12

What types of pattern can I match on?

• Patterns are constructed in the same way that we would
construct the arguments to the function

(&&) :: Bool -> Bool -> Bool
True && True = True
False && _ = False
-- Used as:
a && b
head :: [a] -> a
head (x:_) = x
-- Used as:
head [1, 2, 3] == head (1:[2, 3])

• This is a general rule in constructing pattern matches “If I were
to call the function, what structure do I want to match?”

• Caveat: can only match “data constructors”
-- Not allowed
last :: [a] -> a
last (xs ++ [x]) = x

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 13

Lists: comprehensions

List comprehensions I: syntax

• In maths, we often use comprehensions to construct new sets
from old ones

{2, 4} = {x | x ∈ {1..5}, x mod 2 = 0}

“The set of all integers x between 1 and 5 such that x is even.”
• Haskell supports similar notation for constructing lists.

Prelude> [x | x <- [1..5], x `mod` 2 == 0]
[2, 4]

“The list of all integers x where x is drawn from [1..5] and x is
even”

• x <- [1..5] is called a generator
• Compare Python comprehensions

[x for x in range(1, 6) if (x % 2) == 0]

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 14

List comprehensions II: generators

• Comprehensions can contain multiple generators, separated by
commas

Prelude> [(x, y) | x <- [1,2,3], y <- [4, 5]]
[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

• Variables in the later generator change faster: analogous to
nested loops

l = []
for x in [1, 2, 3]:
for y in [4, 5]:

l.append((x, y))

analogously
[(x, y) for x in [1, 2, 3] for y in [4, 5]]

• Later generators can reference variables from earlier generators
Prelude> [(x, y) | x <- [1..3], y <- [x..3]]
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

“All pairs (x, y) such that x, y ∈ {1, 2, 3} and y ≥ x”

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 15

List comprehensions III: guards

• As well as binding variables to values with generators, we can
restrict the values using guards

• A guard can be any function that returns a Bool

• Guards and generators can be freely interspersed, but guards
can only refer to variables to their left

Prelude> [(x, y) | x <- [1..3], even x, y <- [x..3]]
[(2, 2), (2, 3)]
Prelude> [(x, y) | x <- [1..3], y <- [x..3], even x, even y]
[(2, 2)]
Prelude> [(x, y) | x <- [1..3], even x, even y, y <- [x..3]]
error: Variable not in scope: y :: Integer

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 16

Some examples

• Produce a list of all factors of some positive integer
factors :: Int -> [Int]
factors n = [x | x <- [1..n], n `mod` x == 0]

• For example
> factors 10
[1, 2, 5, 10]

• Now we can determine if a number is prime
prime :: Int -> Bool
prime n = factors n == [1, n]

• And use it to (very expensively) enumerate primes below a limit
primes :: Int -> [Int]
primes n = [x | x <- [2..n], prime x]

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 17

Building block summary

• Prerequisites: none

• Content

• Saw how the literal list syntax translates into construction with (:)
• Discussed implementation and therefore complexity of common list
operations

• Made connection to pattern matching of lists
• Introduced list comprehensions as analogous to set notation
• Saw how nested comprehensions and guards work

• Expected learning outcomes

• student knows how lists are implemented in Haskell
• student can use pattern matching on list expressions to define functions
• student can use list comprehensions to generate new lists

• Self-study

• None

COMP2221—Session 4: λ-expressions, list patterns, and comprehensions 18

	Lambda expressions
	Lists: patterns matching
	Lists: comprehensions

