DRl]
W Durham

University

Session 5: Recursion and higher order
functions

COMP2221: Functional programming

Lawrence Mitchell”

"lawrence.mitchell@durham.ac.uk

COMP2221—Session 5: Recursion and higher order functions

- Saw nameless or anonymous functions (A-expressions), and

syntax
length' :: [a] -> Int
length' xs = sum (map (_ -> 1) xs)

- Discussed why you might want to use them: only use the
function once, clarity, thinking about function composition.

- Discussed a little implementation of lists: linked lists
- Talked about the list constructor cons (:)

- Saw how pattern matching can be used to match lists, and

discussed wildcard patterns

takeFirstTwo :: [a] => (a, a)
takeFirstTwo (x:y:_) = (x, y)

COMP2221—Session 5: Recursion and higher order functions 2

/P,B-ﬁ’ &J e i \
> (cwvreet) recem I

ks lemschb
Definition

see: recursion.

Solving problems with recursion

Solve simple problems

- If the given insta of the problem can be solved d|rectly, solve
it directly. /E \U\MJ’L b case

- Otherwise, reduce it to one or more simpler instances of the

same problem. Sl th= T

Enter the recursion fairy:
Your only task is to simplify the original problem, or to solve
it directly when simplification is either unnecessary or impos-
sible; the Recursion Fairy will solve all the simpler subprob-
lems for you, using Methods That Are None Of Your Business
So mind your own business.

Jeff Erickson, Algorithms

https://jeffe.cs.illinois.edu/teaching/algorithms/

COMP2221—Session 5: Recursion and higher order functions 4

Advice when writing recursive functions

Arns (A=~ b dlrkeU

ke b AR

1. define the type
yp >

2.EnumeratM§] ~ ?Jﬂ(p——

3. define the simple or base cases&<~ Va = k\..'p(.l.(
4. define the reduction of other cases to simpler o@ Frﬂ:(.a.~>

5. (optional) generalise and simp@

~—

COMP2221—Session 5: Recursion and higher order functions

Example: drop

1. define the type

Drop the first n elements from a list

drop :: Int -> [a] -> [a]

2. enumerate the cases
3. define the simple or base cases
4. define the reduction of other cases to simpler ones

5. (optional) generalise and simplify

COMP2221—Session 5: Recursion and higher order functions 6

Example: drop

1. define the type

Drop the first n elements from a list

drop :: Int -> [a] -> [a]

2. enumerate the cases

Two cases each for the integer and the list argument

drop 0 [] =
drop 0 (x:xs)
drop n [] =
drop n (x:xs)

3. define the simple or base cases
4. define the reduction of other cases to simpler ones

5. (optional) generalise and simplify

COMP2221—Session 5: Recursion and higher order functions 6

Example: drop

1. define the type
2. enumerate the cases

Two cases each for the integer and the list argument

drop 0 [] =
drop 0 (x:xs)
drop n [] =
drop n (x:xs)

3. define the simple or base cases

Zero and the empty list are fixed points

drop 0 [] = []

drop 0 (Xx:Xxs) = X:XS
drop n [1 = []

drop n (x:xs) =

4. define the reduction of other cases to simpler ones
5. (optional) generalise and simplify

COMP2221—Session 5: Recursion and higher order functions 6

Example: drop

1. define the type
2. enumerate the cases
3. define the simple or base cases

Zero and the empty list are fixed points

drop 0 [] = []

drop 0 (Xx:Xxs) = X:XS
drop n [] = []

drop n (x:xs) =

4. define the reduction of other cases to simpler ones

Apply drop to the tail

drop 0 []1 = []

drop 0 (x:xs) = X:XS

drop n [1 = []

drop n (x:xs) = drop (n-1) xs

5. (optional) generalise and simplify

COMP2221—Session 5: Recursion and higher order functions 6

Example: drop

1. define the type

2. enumerate the cases

3. define the simple or base cases

4. define the reduction of other cases to simpler ones

Apply drop to the tail

drop 0 []1 = []

drop 0 (x:xs) = X:XS

drop n [] = []

drop n (x:xs) = drop (n-1) xs

5. (optional) generalise and simplify

Compress cases

drop :: Int -> [a] -> [a]
drop 0 xs = xs

drop _ [] = [1
drop n (x:xs) = drop (n-1) xs

COMP2221—Session 5: Recursion and higher order functions 6

Example: drop

1. define the type
enumerate the cases
define the simple or base cases

define the reduction of other cases to simpler ones

o B W N

(optional) generalise and simplify

Compress cases

drop :: Int -> [a] -> [a]
drop 0 xs = Xxs

drop _ [1 =[]
drop n (x:xs) = drop (n-1) xs

6. And we're done (this is the standard library definition)

COMP2221—Session 5: Recursion and higher order functions 6

Equivalence of recursion and iteration

- Both purely iterative and purely recursive programming
languages are Turing complete

- Hence, it is always possible to transform from one
representation to the other

- Which is convenient depends on the algorithm, and the
programming language

Recursion = iteration

- Write looping constructs, manually manage function call stack

Iteration = recursion

- Turn loop variables into additional function arguments

- and write a tail recursive function (see later)

COMP2221—Session 5: Recursion and higher order functions

How are function calls managed?

- Usually a stack is used to manage nested function calls
length? :: [a] -> Int

length' [1 = 0 W{(
length' (x:xs) = 1 + length' xs »él

Prelude> length' [1, 2, 3]

return 3
length' [1, 2, 3] 1+2=3
A
call return 2
Q A4
- length' [2, 3] (1 +1=2)
N A
call return 1
\V z L 2
M length' [3] + 0 =
Ty
call return 0
W > \)J 5 ;

base case

length' []

Each entry on the stack uses memory Una "dlol»(9

- Too many entries causes errors: the dreaded stack overflow ? oM 6

- How big this stack is depends on the language

- Typically “small” in imperative languages and “big” in functional ones
Sa—

COMP2221—Session 5: Recursion and higher order functions

Typically don’t have to worry about stack overflows

- In traditional imperative languages, we often try and avoid recursion
- Function calls are more expensive than just looping

- Deep recursion can result in stack overflow:

ﬁeTfac(n): return 1 if n == 0 else n * f@
N\

S fact3600)

RecursionError Traceback (most recent call last)

----> 1 def fac(n): return 1 if n == 0 else n * fac(n-1)
RecursionError: maximum recursion depth exceeded in comparison

v
- In contrast, Haskell is fine with much—de“;per recugAsqon syS Sb/—r(

fac n = if n == 0 then 1 else n * fac (n-1) (/) »Z

> fac(200000)

..... -- fine, if slow "—') ‘\en ﬁ,‘l.fﬁit
- Unsurprising, given the programming model ’h"d"‘“‘"k &.Us

- Still prefer to avoid recursion trees that are too deep

COMP2221—Session 5: Recursion and higher order functions 9

Classifying recursive functions |

- Since it is natural to write recursive functions, it makes sense to
think about classifying the different types we can encounter

- Classifying the type of recursion is useful to allow us to think
about better/cheaper implementations

Definition (Linear recursion) SMJ\"«L eSS
The recursive call contains only a single self reference 34
length' [] - [1] fe — € e

length' (_:xs)

1 + length' xs A"'k'S"‘ ‘r(

Function just calls itself repeatedly until it h|ts the base case.

Definition (Multiple recursion)
The recursive call contains multiple self references

fib 0
fib 1
fib n

0
1
fib (n - 1) + fib (n - 2)

COMP2221—Session 5: Recursion and higher order functions 10

Classifying recursive functions Il

Definition (Direct recursion)
The function calls itself recursively

[]

X * product' xs

product' []
product' (x:xs)

Definition (Mutual/indirect recursion)
Multiple functions call each other recursively

even' :: Integral a => a -> Bool
even' 0 = True

even' n = odd' (n - 1)

odd' :: Integral a => a -> Bool
odd' 0 = False

odd' n = even' (n - 1)

COMP2221—Session 5: Recursion and higher order functions 1

Tail recursion: a special case

Definition (Tail recursion)

A function is tail recursive if the last result of a recursive call is the
result of the function itself.

Loosely, the last thing a tail recursive function does is call itself
with new arguments, or return a value.

- Such functions are useful because they have a trivial translation
into loops By e, Rkt

- Some languages (e.g. Schemelguarantee that a tail recursive
call will be transformed into a “loop-like” implementation using
a technique called tail call elimination.

= complexity remains unchanged, but implementation is more

efficient.

- In Haskell implementations, while nice, this is not so important
(other techniques are used)

COMP2221—Session 5: Recursion and higher order functions 12

Ilteration < tail recursion

Loops are convenient

def factorial(n):
res = 1

return res

Tail recursi

plementation

- We can't write this directly, since we're\not allowed to mutate
things
- We can write it with a helper recursive functign where all loop

variables become grguments to the function \ . =
g loat flang it Le
7 o do”) Lehn W

factorial n"= loop“n
where loop n res | n < 0 = undgfined ~
| i ln>1 =(n—1)(res*n) l,f\jt
| otherw =

, O

N T

COMP2221—Session 5: Recursion and hlgher order functions C“M ’ 13

ET]]ES

Not tail recursive
Calls (=) after recursing

product' :: Num a => [a] -> a
product' [] = 1
product' (x:xs) = x % product' xs

Tail recursive
Recursive call to 1oop calls itself “outermost

n

product' :: Num a => [a] -> a
product' xs = loop xs 1
where loop [] n = n
loop (x:xs) n = loop xs (x = n)

COMP2221—Session 5: Recursion and higher order functions 14

ET]]ES

Also for mutual recursion
Our even/odd functions are mutually tail recursive

even 0 = True
even n = odd (n-1)
odd 0 = False
odd n = even (n-1)

odd 4

even 3
odd 2

even 1
odd 0

False

nm n mn un nu
mnn n u nu
V V V V V

COMP2221—Session 5: Recursion and higher order functions 14

What about complexity?

- Linear recursion often appears in list traversals. Typically make
O(n) recursive calls on data of size n

- Multiple recursion often appears in tree or graph traversals, as
well as “divide and conquer” algorithms (e.g. binary search).
Number of recursive calls more problem dependent

Which would you use?

binomial :: Integral a => a -> a -> a
binomial n 0 = 1
binomial n k
| n ==k S
| otherwise = binomial (n - 1) (k - 1) + binomial (n - 1) k

binomial' :: Integral a => a -> a -> a
binomial' n k = product [n-(k-1)..n] “div’ product [1..k]

COMP2221—Session 5: Recursion and higher order functions 15

Careful of hidden costs |

Is this a good implementation?

- The reverse of a list is computed by appending the head onto

the reverse of the tail.

reverse' :: [a] -> [a]
reverse' [] []
reverse' (x:xs) reverse' xs ++ [x]

COMP2221—Session 5: Recursion and higher order functions 16

Careful of hidden costs |

Is this a good implementation?

- The reverse of a list is computed by appending the head onto

the reverse of the tail.

reverse' :: [a] -> [a]
reverse' [] = []
reverse' (x:xs) = reverse' xs ++ [x]

reverse' [1, 2, 3]

== reverse' [2, 3] ++ [1] -- applying reverse'
== (reverse' [3] ++ [2]) ++ [1] -- applying reverse'
== ((reverse' [] ++ [3]) ++ [2]) ++ [1] -- base case

== (([1 ++ [31) ++ [2]) ++ [1] -- applying (++)

== ([3] ++ [2]) ++ [1] -- applying (++)

== [3 2] ++ [1] -- applying (++)

== [3, 2, 1]

COMP2221—Session 5: Recursion and higher order functions 16

Careful of hidden costs |

Is this a good implementation?

- The reverse of a list is computed by appending the head onto

the reverse of the tail.

reverse' :: [a] -> [a]
reverse' [] = []
reverse' (x:xs) = reverse' xs ++ [x]

reverse' [1, 2, 3]

== reverse' [2, 3] ++ [1] -- applying reverse'
== (reverse' [3] ++ [2]) ++ [1] -- applying reverse'
== ((reverse' [] ++ [3]) ++ [2]) ++ [1] -- base case

== (([1 ++ [31) ++ [2]) ++ [1] -- applying (++)

== ([3] ++ [2]) ++ [1] -- applying (++)

== [3, 2] ++ [1] -- applying (++)

== [3, 2, 1]

- Recall that (++) must traverse its first argument
- So this implementation is O(n?) is the length of the input list

COMP2221—Session 5: Recursion and higher order functions 16

Careful of hidden costs Il

A more efficient way: combine reverse and append

-- helper function

reverse'' :: [a] -> [a] -> [a]

reverse'' [] ys = ys

reverse'' (x:Xxs) ys = reverse'' xs (x:ys)

reverse' :: [a] -> [a]
reverse' xs = reverse'' xs []

COMP2221—Session 5: Recursion and higher order functions 17

Careful of hidden costs Il

A more efficient way: combine reverse and append

-- helper function

reverse'' :: [a] -> [a] -> [a]

reverse'' [] ys = ys

reverse'' (x:Xxs) ys = reverse'' xs (x:ys)

reverse' :: [a] -> [a]
reverse' xs = reverse'' xs []

reverse' [1, 2, 3, 4]

== reverse'' [1, 2, 3, 4] []1] -- applying reverse'
== reverse'' [2, 3, 4] (1:[]1) -- applying reverse''
== reverse'' [3, 4] (2:1:[1) -- applying reverse''
== reverse'' [4] (3:2:1:[1) -- applying reverse'
== reverse'' [] (4:3:2:1:[]1) -- base case

== (4:3:2:1:[1) -- applying (:)

== [4, 3, 2, 1]

- Since (:) I1s O(1), this implementation is O(n).

COMP2221—Session 5: Recursion and higher order functions 17

Debugging errors

- Easy to get confused writing recursive functions
- The earlier advice is useful

- | often find it useful to write out the call stack “by hand” for a
small example

- Usual error is that all base cases were not covered

COMP2221—Session 5: Recursion and higher order functions 18

Building block summary

- Prerequisites: none
- Content

- Saw strategic approach for writing recursive functions

- Briefly discussed theoretical equivalence of recursion and iteration

- Saw how to implement “iteration” in recursive languages, and vice versa
- Classified different types of recursive functions

- Showed example of (hidden) pitfalls

- Expected learning outcomes

- student can implement recursive functions
- student can explain what class of recursion a function exhibits
- student can describe how recursive calls can be implemented using stacks

- Self-study

- None

COMP2221—Session 5: Recursion and higher order functions 19

Maps and folds

Higher order functions

- We've seen many functions that are naturally recursive

- We'll now look at higher order functions in the standard library
that capture many of these patterns

Definition (Higher order function)
A function that does at least one of

- take one or more functions as arguments
- returns a function as its result

COMP2221—Session 5: Recursion and higher order functions 20

Higher order functions

- We've seen many functions that are naturally recursive

- We'll now look at higher order functions in the standard library
that capture many of these patterns

Definition (Higher order function)
A function that does at least one of

- take one or more functions as arguments
- returns a function as its result

- Due to currying, every function of more than one argument is

higher-order in Haskell
add :: Num a => a -> a -> a
add x y = x +y

Prelude> :type add 1
Num a => a -> a -- A function!

COMP2221—Session 5: Recursion and higher order functions 20

Why are they useful?

- Common programming idioms can be written as functions in the
language

- Domain specific languages can be defined with appropriate
collections of higher order functions

- We can use the algebraic properties of higher order functions to
reason about programs = provably correct program
transformations

= useful for domain specific compilers and automated program
generation

COMP2221—Session 5: Recursion and higher order functions 21

Higher order functions on lists

- Many linear recursive functions on lists can be written using
higher order library functions

- map: apply a function to a list
map :: (a -> b) -> [a] -> [b]
map _ [1 =[]

map f xs [f x | x <- xs]

- filter: remove entries from a list
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] [1]
filter p xs = [x | x <- xs, p x]

* any, all, concatMap, takeWhile, dropWhile,

+ For more, see http://hackage.haskell.org/package/base-4.12.
0.0/docs/Prelude.html#g:13

COMP2221—Session 5: Recursion and higher order functions 22

Function composition

- Often tedious to write brackets and explicit variable names

- Can use function composition to simplify this

(f o 9)(x) =f(g(x))

- Haskell uses the (.) operator
(.) :: (b ->c) ->(a->b) ->(a ->c¢)
f.g=\x->f (g x)

-- example
odd a = not (even a)
odd = not . even -- No need for the a variable

- Useful for writing composition of functions to be passed to
other higher order functions.

- Removes need to write A-expressions

- Called “pointfree” style.

COMP2221—Session 5: Recursion and higher order functions 23

- folds process a data structure in some order and build a return

value
- Haskell provides a number of these in the standard prelude,

with more available in the Data.List module
foldr: right associative fold
Processes list from the front

foldr :: (a -> b ->b) ->b -> [a] -> b
foldr f z [] z
foldr f z (x:xs) x “f° (foldr f z xs)

(fold]
olar j z
/N ! TN
1 f
AN N
2 N rINg
3 /N 3 /\f
4 7'\ /7 N\
5 [5 z

\ /

COMP2221—Session 5: Recursion and higher order functions 24

- folds process a data structure in some order and build a return

value
- Haskell provides a number of these in the standard prelude,

with more available in the Data.List module
foldl: left associative fold
Processes list from the back (implicitly in reverse)

foldl :: (b ->a ->b) ->b -> [a] -> b
foldl f z [] = w
foldl f z (x:xs) foldl f (z “f° x) xs -- tail recursive!

foldl fz

COMP2221—Session 5: Recursion and higher order functions 24

How to think about this

- foldr and foldl are recursive
- Often easier to think of them non-recursively

foldr
Replace (:) by the given function, and [] by given value.

sum [1, 2, 3]

foldr (+) 0 [1, 2, 3]
foldr (+) 0 (1:(2:(3:[1)))
1+ (2+ (3 +0))

6

foldl
Same idea, but associating to the left

sum [1, 2, 3]

foldl (+) o [1, 2, 3]
foldl (+) 0 (1:(2:(3:1[1)))
(((1 +2) +3) +1)

6

COMP2221—Session 5: Recursion and higher order functions 25

Why would | use them?

- Capture many linear recursive patterns in a clean way

- Can have efficient library implementation = can apply program
optimisations

- Actually apply to all Foldable types, not just lists

- e.g. foldr's type is actually
foldr :: Foldable t => (a -> b ->b) ->b ->t a ->b

- So we can write code for lists and (say) trees identically

Folds are general

- Many library functions on lists are written using folds

product = foldr (%) 1
sum = foldr (+) 0O
maximum = foldrl max

- Practical sheet 4 asks you to define some others

COMP2221—Session 5: Recursion and higher order functions 26

Which to choose?

foldr

- Generally foldr is the right (ha!) choice
- Works even for infinite lists!
- Note foldr (:) [] == id

- Can terminate early.

foldl

- Usually best to use strict version:

import Data.List
foldl' -- note trailing '

- Doesn’t work on infinite lists (needs to start at the end)
- Use when you want to reverse the list: foldl (flip (:)) [] == reverse

- Can't terminate early.

COMP2221—Session 5: Recursion and higher order functions 27

Building block summary

- Prerequisites: none
- Content

- Introducted definition of higher order functions

- Saw definition and use of a number of such functions on lists

- Talked about folds and capturing a generic pattern of computation
- Gave examples of why you would prefer them over explicit iteration

- Expected learning outcomes

- student can explain what makes a function higher order

- student can write higher order functions

- student can use folds to realise linear recursive patterns

- student can explain differences between foldr and foldl

- Self-study

- None

COMP2221—Session 5: Recursion and higher order functions 28

