

Session 5: Recursion and higher order functions

COMP2221: Functional programming

Lawrence Mitchell*

^{*}lawrence.mitchell@durham.ac.uk

Recap

• Saw nameless or anonymous functions (λ -expressions), and syntax

```
length' :: [a] -> Int
length' xs = sum (map (\_ -> 1) xs)
```

- Discussed why you might want to use them: only use the function once, clarity, thinking about function composition.
- Discussed a little implementation of lists: linked lists
- Talked about the list constructor cons (:)
- Saw how pattern matching can be used to match lists, and discussed wildcard patterns

```
takeFirstTwo :: [a] => (a, a)
takeFirstTwo (x:y:_) = (x, y)
```

Proof by induchi (=> (correct) recursive funchi influenth.

Definition

recursion noun

see: recursion.

program provides a vituess to a proof of sme statement. Ly undegins "groof as is states" atomated therem proves.

Solving problems with recursion

Solve simple problems

- · If the given instance of the problem can be solved directly, solve it directly.
- Otherwise, reduce it to one or more *simpler* instances of the same problem.

Enter the recursion fairy:

Your only task is to simplify the original problem, or to solve it directly when simplification is either unnecessary or impossible; the Recursion Fairy will solve all the simpler subproblems for you, using Methods That Are None Of Your Business So mind your own business.

Jeff Erickson, Algorithms

https://jeffe.cs.illinois.edu/teaching/algorithms/

Advice when writing recursive functions

Translati it Murkell.

- 1. define the type
- 2. enumerate the cases
- define the simple or base cases<
- 4. define the reduction of other cases to simpler ones
- 5. (optional) generalise and simplify

1. define the type

Drop the first n elements from a list

```
drop :: Int -> [a] -> [a]
```

- 2. enumerate the cases
- 3. define the simple or base cases
- 4. define the reduction of other cases to simpler ones
- 5. (optional) generalise and simplify

1. define the type

Drop the first *n* elements from a list

```
drop :: Int -> [a] -> [a]
```

2. enumerate the cases

Two cases each for the integer and the list argument

```
drop 0 [] =
drop 0 (x:xs) =
drop n [] =
drop n (x:xs) =
```

- 3. define the simple or base cases
- 4. define the reduction of other cases to simpler ones
- 5. (optional) generalise and simplify

- 1. define the type
- 2. enumerate the cases

Two cases each for the integer and the list argument

```
drop 0 [] =
drop 0 (x:xs) =
drop n [] =
drop n (x:xs) =
```

3. define the simple or base cases

Zero and the empty list are fixed points

```
drop 0 [] = []
drop 0 (x:xs) = x:xs
drop n [] = []
drop n (x:xs) =
```

- 4. define the reduction of other cases to simpler ones
- 5. (optional) generalise and simplify

- 1. define the type
- 2. enumerate the cases
- 3. define the simple or base cases

Zero and the empty list are fixed points

```
drop 0 [] = []
drop 0 (x:xs) = x:xs
drop n [] = []
drop n (x:xs) =
```

4. define the reduction of other cases to simpler ones

Apply drop to the tail

```
drop 0 [] = []
drop 0 (x:xs) = x:xs
drop n [] = []
drop n (x:xs) = drop (n-1) xs
```

5. (optional) generalise and simplify

- 1. define the type
- 2. enumerate the cases
- 3. define the simple or base cases
- 4. define the reduction of other cases to simpler ones

Apply drop to the tail

```
drop 0 [] = []
drop 0 (x:xs) = x:xs
drop n [] = []
drop n (x:xs) = drop (n-1) xs
```

5. (optional) generalise and simplify

Compress cases

```
drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop n (x:xs) = drop (n-1) xs
```

- 1. define the type
- 2. enumerate the cases
- 3. define the simple or base cases
- 4. define the reduction of other cases to simpler ones
- 5. (optional) generalise and simplify

Compress cases

```
drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop n (x:xs) = drop (n-1) xs
```

6. And we're done (this is the standard library definition)

Equivalence of recursion and iteration

- Both purely iterative and purely recursive programming languages are Turing complete
- Hence, it is always possible to transform from one representation to the other
- Which is convenient depends on the algorithm, and the programming language

Recursion ⇒ iteration

Write looping constructs, manually manage function call stack

Iteration ⇒ recursion

- Turn loop variables into additional function arguments
- and write a tail recursive function (see later)

How are function calls managed?

• Usually a *stack* is used to manage nested function calls

```
length*!: [a] -> Int
length' [] = 0
length' (x:xs) = 1 + length' xs
Prelude> length' [1, 2, 3]
```

thit call
elinbi
de 's real
ve frances likes oss

molorated 47
30MB

- Each entry on the stack uses memory
- Too many entries causes errors: the dreaded stack overflow
- How big this stack is depends on the language
- Typically "small" in imperative languages and "big" in functional ones

Typically don't have to worry about stack overflows

- In traditional *imperative* languages, we often try and avoid recursion
- Function calls are more expensive than just looping
- Deep recursion can result in stack overflow:

```
def fac(n): return 1 if n == 0 else n * fac(n-1)
> fac(3000)
RecursionError Traceback (most recent call last)
----> 1 def fac(n): return 1 if n == 0 else n * fac(n-1)
RecursionError: maximum recursion depth exceeded in comparison
```

· In contrast, Haskell is fine with much deeper recursion

```
fac n = if n == 0 then 1 else n * fac (n-1)

> fac(200000)

.... -- fine, if slow

heap allocali

nsurprising, given the programming model

ill prefer to avoid recursion trace that
```

Unsurprising, given the programming model

Still prefer to avoid recursion trees that are too deep

Classifying recursive functions I

- Since it is natural to write recursive functions, it makes sense to think about classifying the different types we can encounter
- Classifying the type of recursion is useful to allow us to think about better/cheaper implementations

Definition (Linear recursion)

The recursive call contains only a single self reference

```
length' [] = []
length' (_:xs) = 1 + length' xs
```

wholes dakshuda

shuckal recosi

Function just calls itself repeatedly until it hits the base case.

Definition (Multiple recursion)

The recursive call contains multiple self references

```
fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)
```

Classifying recursive functions II

Definition (Direct recursion)

The function calls itself recursively

```
product' [] = []
product' (x:xs) = x * product' xs
```

Definition (Mutual/indirect recursion)

Multiple functions call each other recursively

```
even' :: Integral a => a -> Bool
even' 0 = True
even' n = odd' (n - 1)

odd' :: Integral a => a -> Bool
odd' 0 = False
odd' n = even' (n - 1)
```

Tail recursion: a special case

Definition (Tail recursion)

A function is tail recursive if the last result of a recursive call is the result of the function itself.

Loosely, the last thing a tail recursive function does is call itself with new arguments, or return a value.

- · Such functions are useful because they have a trivial translation into loops **Big Love.** Racket.
- Some languages (e.g. Scheme) *guarantee* that a tail recursive call will be transformed into a "loop-like" implementation using a technique called *tail call elimination*.
- ⇒ complexity remains unchanged, but implementation is more efficient.
 - In Haskell implementations, while nice, this is not so important (other techniques are used)

Iteration ⇔ tail recursion

Loops are convenient

```
def factorial(n):
    res = 1
    for i in range(n, 1, -1):
        res *= 1
    return res
```

Tail recursive implementation

- We can't write this directly, since we're not allowed to mutate things
- We can write it with a helper recursive function where all loop variables become arguments to the function

```
factorial n = loop n n < 0 = undefined n > 1 = loop (n - 1) res * n res = res
```

uow prohi

Examples

Not tail recursive

```
Calls (*) after recursing

product' :: Num a => [a] -> a
product' [] = 1
product' (x:xs) = x * product' xs
```

Tail recursive

Recursive call to loop calls itself "outermost"

```
product' :: Num a => [a] -> a
product' xs = loop xs 1
  where loop [] n = n
      loop (x:xs) n = loop xs (x * n)
```

Examples

Also for mutual recursion

Our even/odd functions are mutually tail recursive

```
even 0 = True
even n = odd (n-1)
odd 0 = False
odd n = even (n-1)

odd 4
==> even 3
==> odd 2
==> even 1
==> odd 0
==> False
```

What about complexity?

- Linear recursion often appears in list traversals. Typically make $\mathcal{O}(n)$ recursive calls on data of size n
- Multiple recursion often appears in tree or graph traversals, as well as "divide and conquer" algorithms (e.g. binary search).
 Number of recursive calls more problem dependent

Which would you use?

Careful of hidden costs I

Is this a good implementation?

• The reverse of a list is computed by appending the head onto the reverse of the tail.

```
reverse' :: [a] -> [a]
reverse' [] = []
reverse' (x:xs) = reverse' xs ++ [x]
```

Careful of hidden costs I

Is this a good implementation?

 The reverse of a list is computed by appending the head onto the reverse of the tail.

Careful of hidden costs I

Is this a good implementation?

 The reverse of a list is computed by appending the head onto the reverse of the tail.

- Recall that (++) must traverse its first argument
- So this implementation is $\mathcal{O}(n^2)$ is the length of the input list

Careful of hidden costs II

A more efficient way: combine reverse and append

```
-- helper function
reverse'' :: [a] -> [a] -> [a]
reverse'' [] ys = ys
reverse'' (x:xs) ys = reverse'' xs (x:ys)
reverse' :: [a] -> [a]
reverse' xs = reverse'' xs []
```

Careful of hidden costs II

A more efficient way: combine reverse and append

```
-- helper function
reverse'' :: [a] -> [a] -> [a]
reverse'' [] ys = ys
reverse'' (x:xs) ys = reverse'' xs (x:ys)
reverse' :: [a] -> [a]
reverse' xs = reverse'' xs []
reverse' [1, 2, 3, 4]
== reverse'' [1, 2, 3, 4] [] -- applying reverse'
== reverse'' [2, 3, 4] (1:[]) -- applying reverse''
== reverse'' [3, 4] (2:1:[]) -- applying reverse''
== reverse'' [4] (3:2:1:[]) -- applying reverse'
== reverse'' [] (4:3:2:1:[]) -- base case
                 -- applying (:)
== (4:3:2:1:[])
== [4, 3, 2, 1]
• Since (:) is \mathcal{O}(1), this implementation is \mathcal{O}(n).
```

COMP2221—Session 5: Recursion and higher order functions

Debugging errors

- Easy to get confused writing recursive functions
- · The earlier advice is useful
- I often find it useful to write out the call stack "by hand" for a small example
- Usual error is that all base cases were not covered

Building block summary

- · Prerequisites: none
- Content
 - Saw strategic approach for writing recursive functions
 - Briefly discussed theoretical equivalence of recursion and iteration
 - · Saw how to implement "iteration" in recursive languages, and vice versa
 - Classified different types of recursive functions
 - · Showed example of (hidden) pitfalls
- Expected learning outcomes
 - student can implement recursive functions
 - student can explain what class of recursion a function exhibits
 - student can describe how recursive calls can be implemented using stacks
- Self-study
 - None

Maps and folds

Higher order functions

- · We've seen many functions that are naturally recursive
- We'll now look at higher order functions in the standard library that capture many of these patterns

Definition (Higher order function)

A function that does at least one of

- take one or more functions as arguments
- · returns a function as its result

Higher order functions

- We've seen many functions that are naturally recursive
- We'll now look at higher order functions in the standard library that capture many of these patterns

Definition (Higher order function)

A function that does at least one of

- take one or more functions as arguments
- returns a function as its result.
- Due to currying, every function of more than one argument is higher-order in Haskell

```
add :: Num a => a -> a -> a
add x y = x + y

Prelude> :type add 1
Num a => a -> a -- A function!
```

Why are they useful?

- Common programming idioms can be written as functions in the language
- Domain specific languages can be defined with appropriate collections of higher order functions
- We can use the algebraic properties of higher order functions to reason about programs ⇒ provably correct program transformations
- ⇒ useful for domain specific compilers and automated program generation

Higher order functions on lists

- Many linear recursive functions on lists can be written using higher order library functions
- map: apply a function to a list

```
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f xs = [f x | x <- xs]</pre>
```

filter: remove entries from a list

```
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p xs = [x | x <- xs, p x]</pre>
```

- any, all, concatMap, takeWhile, dropWhile,
- For more, See http://hackage.haskell.org/package/base-4.12.
 0.0/docs/Prelude.html#g:13

Function composition

- Often tedious to write brackets and explicit variable names
- · Can use function composition to simplify this

$$(f\circ g)(x)=f(g(x))$$

Haskell uses the (.) operator

```
(.) :: (b -> c) -> (a -> b) -> (a -> c)
f . g = \x -> f (g x)
-- example
odd a = not (even a)
odd = not . even -- No need for the a variable
```

- Useful for writing composition of functions to be passed to other higher order functions.
- Removes need to write λ -expressions
- Called "pointfree" style.

Folds

- folds process a data structure in some order and build a return value
- Haskell provides a number of these in the standard prelude,
 with more available in the Data.List module

foldr: right associative fold

Processes list from the front

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = x `f` (foldr f z xs)
```


Folds

- folds process a data structure in some order and build a return value
- Haskell provides a number of these in the standard prelude,
 with more available in the Data.List module

foldl: left associative fold

Processes list from the back (implicitly in reverse)

How to think about this

- foldr and foldl are recursive
- Often easier to think of them non-recursively

foldr

Replace (:) by the given function, and [] by given value.

```
sum [1, 2, 3]
= foldr (+) 0 [1, 2, 3]
= foldr (+) 0 (1:(2:(3:[])))
= 1 + (2 + (3 + 0))
= 6
```

foldl

Same idea, but associating to the left

```
sum [1, 2, 3]
= foldl (+) 0 [1, 2, 3]
= foldl (+) 0 (1:(2:(3:[])))
= (((1 + 2) + 3) + 1)
= 6
```

Why would I use them?

- Capture many linear recursive patterns in a clean way
- Can have efficient library implementation ⇒ can apply program optimisations
- Actually apply to all Foldable types, not just lists
- e.g. foldr's type is actually
 foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
- So we can write code for lists and (say) trees identically

Folds are general

Many library functions on lists are written using folds

```
product = foldr (*) 1
sum = foldr (+) 0
maximum = foldr1 max
```

Practical sheet 4 asks you to define some others

Which to choose?

foldr

- Generally foldr is the right (ha!) choice
- Works even for infinite lists!
- Note foldr (:) [] == id
- · Can terminate early.

foldl

Usually best to use strict version:

```
import Data.List
foldl' -- note trailing '
```

- Doesn't work on infinite lists (needs to start at the end)
- Use when you want to reverse the list: foldl (flip (:)) [] == reverse
- Can't terminate early.

Building block summary

- · Prerequisites: none
- Content
 - Introducted definition of higher order functions
 - · Saw definition and use of a number of such functions on lists
 - Talked about *folds* and capturing a generic *pattern* of computation
 - · Gave examples of why you would prefer them over explicit iteration
- Expected learning outcomes
 - student can explain what makes a function higher order
 - student can write higher order functions
 - student can use folds to realise linear recursive patterns
 - student can explain differences between foldr and foldl
- Self-study
 - None