AB
W Durham

University

Session 8: 10 and interaction

COMP2221: Functional programming

Lawrence Mitchell”

"lawrence.mitchell@durham.ac.uk

COMP2221—Session 8: 10 and interaction

- Discussed Haskell's implementation of expression evaluation:
lazy evaluation

- Saw how lazy evaluation allows for programming with infinite
data structures

- Discussed difference between strict and lazy evaluation, and
how to implement strict functions in Haskell.

COMP2221—Session 8: 10 and interaction 2

|O and side effects

Batch programs

- So far, we've only written batch programs

- That Is, programs that take all their inputs at the start and
provide output at the end.

Batch programs .
outputs

Inputs
batch program >

Y

- To change what we compute, need to change source code and
rerun.

- What if want to write programs that allow interaction?

COMP2221—Session 8: 10 and interaction 3

Interactive programs

- What if we want to use Haskell to write interactive programs?

- These read from the “keyboard” and write to the “screen” as they

e A

are running rRyIZ facu\ ’udiko ComR 7~

Interactive program

k keyboard I
\s % S | !
(\Sd} Inputs , _ outputs
Q &? > interactive program >
J- !
Q screen)

Pe—

- Now the results can change depending on what input is
provided (via the keyboard) = problem?

COMP2221—Session 8: 10 and interaction 4

- Haskell programs are pure mathematical functions

= Haskell programs therefore have no side effects

Definition (Side effect)
Modify some (internal/hidden) state as well as returning a value

- Reading from the keyboard and writing to the screen are side
effects

= Interactive programs have side effects

Hovvto square this circle?
D\»”')" (ptthar ", pokCher =3
' e x = pulller s “:‘O&,)\>

COMP2221—Sessioné IO and interaction

Conceptual idea

- We can think of an interactive program as a pure function of type
World -> World

- That Is, it takes the current state of the world as input and
produces a modified world as output

= new World object reflects any side effects that were performed

10 actions

type I0 a = World -> (a, World)

Input/output eats the world and produces a result of type a, along
with a new world.

M_,{r; Mw; $e ‘0 (*3 .

COMP2221—Session 8: 10 and interaction 6

A solution: actions

- Copying the world Is too expensive in practice

= Introduce new types to distinguish pure expressions from
impure actions

= Use the concept, but Haskell uses a primitive type:
Implementation details are hidden.

- These actions may have side effects

- Now we can write interactive programs in Haskell and “hide” the
side effects behind a type.

The 10 type

data I0 a = ... -- "Opaque" implementation

The type of actions that return a value of type a.

COMP2221—Session 8: 10 and interaction 7

Basic actions

L{,.oL a—L ecdho o
Reading MJ_U’

Do 69 D G sed M’l’ T o g hlls

Read a character from the keyboard, echo it toJthe screen, and
return it

Writing {‘7))(wu.g «aM,_
putChar :: Char -> IO ()
putChar ¢ = ...

Write a character to the screen and return nothing (indicated by the
empty tuple)

COMP2221—Session 8: 10 and interaction 8

Bridging from expressions into actions

- For type safety, we need a way of “wrapping” values into actions

Allows us to bring side-effect-free expressions into the “action”
world.

From pure to impure

return :: a -> IO a \V \A“(""L

return v = ...

“Lift" a pure expression into an impure action. 7! Cﬁ "l d)

) Note: no way of turning an action back again.

WARNING!

The name return Is rather misleading when coming from
Imperative languages. Calling return does not affect control flow.

COMP2221—Session 8: 10 and interaction 9

Sequencing actions

- We can combine a sequence of 10 actions using do notation
do (v {N? ,.L_L,
w o ‘)ML J)

v2| <- a2

£ bren >
v <- an
\wn (’Lvl v2 ... vn) P & (fu\ih

- Binds results of actions to values and then applies f to the
values and lifts into “action-land” with return.

Similarity with list comprehensions

- Each expression vi <- ai Is called a generator

- If we want to execute an action, but don’t care about the result,
We can use _ <- ai orjustai

COMP2221—Session 8: 10 and interaction 10

Example: reading characters

A first action

act :: I0 (Char, Char)
act = do x <- getChar
getChar
y <- getChar
return (x, y)

- Read three characters, discard the second, and return the first
and third.

- Note use of return, without it we would get a type error

= (x, y) :: (Char, Char), but we need an 10 (Char, Char).

COMP2221—Session 8: 10 and interaction 1

More primitives

Read a string

getLine :: IO String
getLine = do x <- getChar

if x == '\n' then
return []
else

do xs <- getlLine
return (x:xs)

COMP2221—Session 8: 10 and interaction

12

More primitives

Write a string

putStr :: String -> IO ()

putStr [] = return ()
putStr (x:xs) = do putChar x
putStr xs

Write a string with a new line

putStrLn :: String -> IO ()
putStrLn xs = do putStr xs
putChar '\n'

COMP2221—Session 8: 10 and interaction

12

When is an action performed?

- Actions never require arguments: act :: I0 a IS nota function
- Just specify that something will be done
= Must be “run” to execute

- GHCi knows to run actions at the prompt

Prelude> x = putStrLn "hello" P lO()

Prelude>
hello
Prelude> x
hello

- Conversely, when writing a program to be compiled, GHC only
ends up running the main action.

= Compare main function in C/Java. -
M,GML(Ml«es S

. . : ¢ \
COMP2221—Session 8: 10 and interaction I - ! lo (’X 13

Why these complications?

- One might wonder why we can’t write actions as functions

- They would then behave like we're “used to”

Why not this?

getChar :: () -> Char
getChar _ = ...

“getChar ignores its argument and returns a char”

- The problem is one of purity and referential transparency

COMP2221—Session 8: 10 and interaction 14

Pure vs. Impure

Pure Impure
- Always produces same result - May produce different results
when applied to the same when applied to the same
arguments arguments
- Never has side effects - May have side effects
- Never alters state - May alter state

- Impure functions are not referentially transparent

Definition (Referential transparency)

Replacing an expression by its value does not change the
behaviour of the program

- Not possible with getChar: which char should we substitute?
= Can't treat them as normal (pure) functions

COMP2221—Session 8: 10 and interaction 15

Actions as promises

- To fix the issue of referential transparency, 10 is introduced

- We can think then of a type 10 char as a placeholder for a Char
that will only materialise once the program executes

- Moreover, it encapsulates a promise that this char will actually
appear.

= manipulating an 10 char is equivalent to setting up “plans” to be
executed when the char materialises.

- This way, we maintain type safety “inside” the action.

10 Mowed b b ey, Joat
dede - He L A

COMP2221—Session 8: 10 and interaction

16

An example interactive program

- Let's write a simple “hangman” game:
- Player A secretly enters a word
- Player B tries to figure out the word with a sequence of guesses

- For each guess, the program indicates which letters of the secret
word are in the guess

- Game is over once the guess is correct

- Let's implement this “top down”

COMP2221—Session 8: 10 and interaction 17

Hangman |

- We start by importing useful 10 functions

- The main function will just run the game

import System.IO
-- Set terminal output buffering so we see prints immediately
main = do hSetBuffering stdout NoBuffering

hangman

- We prompt for a word, read it secretly (without echoing) and

then run the play loop.

hangman :: I0 ()

hangman = do putStrLn "Think of a word:
word <- secretlyGetlLine
play word

COMP2221—Session 8: 10 and interaction 18

Hangman Il

- Now we want to read input from the terminal, but without
echoing

- getlLine does the former, but also echos as we type.

- Here we turn off the echoing and instead print hyphens

secretlyGetLine :: IO String
secretlyGetLine = do hSetEcho stdin False
Xs <- getlLine
putChar (replicate (length xs) '-')
hSetEcho stdin True
return xs

- Notice how inside the do block, the results of actions are just
normal pure types.

COMP2221—Session 8: 10 and interaction 19

Hangman lil

- Finally, we define how to play the game

- We repeatedly ask for a guess, either it was correct
play :: String -> I0 ()
play word = do putStr "What is your guess? "
guess <- getline
if guess == word then
do putStr "Correct! The word was
putStrLn word

- Or it was not, in which case we show which letters matched and

prompt again.
else
do putStrLn (match word guess)
play word

match :: String -> String -> String
match xs ys = [if x “elem” ys then x else '-'| x <- xs]

COMP2221—Session 8: 10 and interaction 20

Building block summary

- Prerequisites: none
- Content

- Saw IO action, and how this allows side-effectful input and output in
Haskell programs

- Discussed difference between pure and impure functions

- Saw sequencing and do syntax for I0 actions

- Saw how to write interactive programs that prompt for input from terminal.

- Expected learning outcomes

- Student can explain how Haskell deals conceptually with side-effectful 10.
- Student can write simple interactive programs

- Self-study

- None

COMP2221—Session 8: 10 and interaction 21

