A
W Durham

University

Session 7: Maps, folds, and type classes (again)
COMP2221: Functional programming

Lawrence Mitchell”

"lawrence.mitchell@durham.ac.uk

COMP2221—Session 7: Maps, folds, and type classes (again)

- Gave an example of “hidden” complexity in list reversal
- ..and one approach to addressing it

- Provided advice on how to approach writing recursive functions
“step by step”

COMP2221—Session 7: Maps, folds, and type classes (again) 2

Maps and folds

Higher order functions

- We've seen many functions that are naturally recursive

- We'll now look at higher order functions in the standard library
that capture many of these patterns

Definition (Higher order function)
A function that does at least one of

- take one or more functions as arguments
- returns a function as its result

COMP2221—Session 7: Maps, folds, and type classes (again) 3

Higher order functions

- We've seen many functions that are naturally recursive

- We'll now look at higher order functions in the standard library
that capture many of these patterns

Definition (Higher order function)
A function that does at least one of

- take one or more functions as arguments
- returns a function as its result

- Due to currying, every function of more than one argument is
higher-order in Haskell L ek
add :: Num a => a -> a -> a /(L"‘t@q/bﬁoh"/
add x y = x + vy Lf_ l}_\/

—
Prelude> :type add 1 /\W
Num a => a -> a -- A function!

COMP2221—Session 7: Maps, folds, and type classes (again)

Why are they useful?

- Common programming idioms can be written as functions in
the language

- Domain specific languages can be defined with appropriate
collections of higher order functions

- We can use the algebraic properties of higher order functions to
reason about programs = provably correct program
transformations

= useful for domain specific compilers and automated program
generation

COMP2221—Session 7: Maps, folds, and type classes (again) 4

g £ L0

Y PV Y ST (WO wd Lw(ﬁx/vS =

(ol QM xo b b lres

Higher order functions on lists

- Many linear recursive functions on lists can be written using
higher order library functions

- map: apply a function to a list
map :: (a -> b) -> [a] -> [b]
map _ [1 =[]

map f xs = [f x | x <- xs]

- filter: remove entries from a list

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] []
filter p xs [x | x <- xs, p x]

* any, all, concatMap, takeWhile, dropWhile,

- For more, see http://hackage.haskell.org/package/base-4.12.
0.0/docs/Prelude.html#g:13

COMP2221—Session 7: Maps, folds, and type classes (again) 5

http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#g:13
http://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#g:13

Function composition

- Often tedious to write brackets and explicit variable names

- Can use function composition to simplify this

(f o g)(x) =1 (9(x))

- Haskell uses the (.) operator
(.) :: (b ->¢c) ->(a ->b) ->(a ->c)
f.g=\x->f (g x)

-- example
odd a = not (even a)
odd = not . even -- No need for the a variable

- Useful for writing composition of functions to be passed to
other higher order functions.

. . oM (fML 10
- Removes need to write A-expressions dX

- Called “pointfree” style.

COMP2221—Session 7: Maps, folds, and type classes (again) 6

- folds process a data structure in some order and build a return

value
- Haskell provides a number of these in the standard prelude,
with more available in the Data.List module

foldr: right associative fold ,
Processes list from the front o - m}

foldr
foldr f z []
foldr f z (x:xs)

L
)yw

z

:: (a->b->b) ->b ->[a] -> b

~

x “f° (foldr f z xs) n
foldr fz
/\, ‘/f\f
VRN /YN
2 : 2 f
2N / \f
3 N 3 I
4 i 4 /f\
5 [5 z

COMP2221—Session 7: Maps, folds, and type classes (again)

- folds process a data structure in some order and build a return

value

- Haskell provides a number of these in the standard prelude,
with more available in the Data.List module

foldl: left associative fold

Processes list from the back (implicitly in reverse)

foldl :: (b -> a
foldl f z []
foldl f z (x:xs)

COMP2221—Session 7: Maps, folds, and type classes (again)

>b) ->b ->[a] -> b

z

foldl f (z

T x) xs

-

7\,
E

foldl f

\.
N
/N
7\

f

}/f\
fo 4

YARRN
/f\ 3

VAR

5

— —

i 05 AU
&

How to think about this

- foldr and foldl are recursive
- Often easier to think of them non-recursively

foldr
Replace (:) by the given function, and []1 by given value.

[1, 2, 3] 0 (..-- 3
e o by ae 10 (Hle (DD LD
= foldr (+) 0 (1:(2:(3:[1)))

12 G0 Rl 10 (42113=..-—->
= 6
foldl

Same idea, but associating to the left

sum [1, 2, 3]
foldl (+) o [1, 2, 3]

foldl (+) 0 (1:(2:(3:[1))) 'LB 4+ >
(((1+2) +3) +) <iZ;\€?-+’!> ! :B
0

B o [fUL (e Gy LI LT 7)

COMP2221—Session 7: Maps, folds, and type classes (again) 8

Why would | use them?

- Capture many linear recursive patterns in a clean way

- Can have efficient library implementation = can apply program
optimisations

- Actually apply to all Foldable types, not just lists

- e.g. foldr's type is actually
foldr :: Foldable t => (a -> b ->b) ->b ->t a ->b

- So we can write code for lists and (say) trees identically

Folds are general

- Many library functions on lists are written using folds
product = foldr (*) 1

sum = foldr (+) 0 10k 0 .
maximum = foldrl max 30 l\w fvl’ 2

- Practical sheet 4 asks you to define some others

COMP2221—Session 7: Maps, folds, and type classes (again) 9

Which to choose?

foldr HA’/IA:HLS (][_ . '\»}M[”
- Generally foldr is the right (ha!) choice As§ 0 el v
- Works even for infinite lists!

- Note foldr (:) [] == id IS 75 - qﬁf[ﬂ(r & Ug XS

- Can terminate early.

foldl

- Usually best to use strict version:

import Data.List
foldl' -- note trailing '

- Doesn’'t work on infinite lists (needs to start at the end)

- Use when you want to reverse the list: foldl (flip (:)) [] == reverse

- Can't terminate early. /_H'LP + ~x b
Fip £ = Nry> ’Jtﬂ/C

COMP2221—Session 7: Maps, folds, and type classes (again) 10

Building block summary

- Prerequisites: none
- Content

- Introducted definition of higher order functions

- Saw definition and use of a number of such functions on lists

- Talked about folds and capturing a generic pattern of computation
- Gave examples of why you would prefer them over explicit iteration

- Expected learning outcomes

- student can explain what makes a function higher order

- student can write higher order functions

- student can use folds to realise linear recursive patterns

- student can explain differences between foldr and foldl

- Self-study

- None

COMP2221—Session 7: Maps, folds, and type classes (again) 1

Higher order functions and type
classes again

- Saw example higher-order functions on lists
- Now we'll look at even more generic patterns

- ..Implement our own datatypes

- ..and implement these generic patterns for our datatypes.

map :: (a -> b) -> [a] -> [b]

filter :: (a -> Bool) -> [a] -> [a]
takeWhile :: (a -> Bool) -> [a] -> [a]
dropwWhile :: (a -> Bool) -> [a] -> [a]
concatMap :: (a -> [b]) -> [a]l -> [b]

COMP2221—Session 7: Maps, folds, and type classes (again)

12

Separating code and data

- When designing software, a good aim is to hide the
implementation of data structures

- In OO based languages we do this with classes and inheritence

- Or with interfaces, which define a contract that a class must

Implement
public interface FoolInterface {
public bool isFoo();

}

public class MyClass implements FooInterface {
public bool isFoo() {
return False;

}
}

- ldea is that calling code doesn’t know internals, and only relies
on interface.

- As a result, we can change the implementation, and client code
still works

COMP2221—Session 7: Maps, folds, and type classes (again) 13

Generic higher order functions

- In Haskell we can realise this idea with generic higher order
functions, and type classes

- Last time, we saw some examples of higher order functions for
lists

- For example, imagine we want to add two lists pairwise

-- By hand

addLists _ [] = []

addLists [] _ []

addLists (x:xs) (y:ys) = (x + y) : addLists xs ys

-- Better

addLists xs ys = map (uncurry (+)) $ zip xs ys &}k_<:k\%9 -
-- Best - rﬁk % ' vagb,j>
addLists = zipwith (+) w~ R C,k

- If we write our own data types, are we reduced to doing
everything “by hand” again?

COMP2221—Session 7: Maps, folds, and type classes (again) 14

No: use type classes

- Recall, Haskell has a concept of type classes

- These describe interfaces that can be used to constrain the
polymorphism of functions to those types satisfying the

Interface
Example
- (+) acts on any type, as long as that type implements the Num interface
(+) :: Num a => a -> a -> a
- (<) acts on any type, as long as that type implements the Ord interface
(<) :: 0rd a => a -> a -> Bool

- Haskell comes with many such type classes encapsulating
common patterns

- When we implement our own data types, we can “just”
Implement appropriate instances of these classes

COMP2221—Session 7: Maps, folds, and type classes (again) 15

Let's look at the types of three “maps”

z[_
data [] a =[] | a:[al J \Y

map :: (a -> b) -> [a] -> [b] /S\ B
¢ g

. . ! L
data BinaryTree a = Leaf a | Node a (BinaryTree a) (BinaryTree a)
Ifmap :: (a -> b) -> BinaryTree a -> BinaryTree b

data RoseTree a = Leaf—a—Node—a—fRoseTree—a] N a(c, a [Qﬂjle@ 0:]

tmap :: (a -> b) -> RoseTree a -> RoseTree b

Only difference is the type name of the container. This suggests that
we should make a “Container” type class to capture this pattern.

Haskell calls this type class Functor “ ?fw-\a &?b’ﬁ‘ N
C
class Functor ciwhere /“1 M"qg
fmap :: (a ->b) ->ca->cb K
L=y Cw)

If a type implements the Functor interface, it is defines structure that

we can transform the elements of in a systemati%% (/3 Joe
\\'/\, S\)\L\'K‘ M? .

oz
COMP2221—Session 7: Maps, folds, and type classes (again) M 16

@ niftierideology

@niftierideology

Haskell is very simple. Everything is composed of
Functads which are themselves a Tormund of
Gurmoids, usually defined over the Devons. All you
have to do is stick one Devon inside a Tormund and it

yields Reverse Functads (Actually Functoids) you use
to generate Unbound Gurmoids.

https://twitter.com/niftierideology/status/
1018564372652670976

COMP2221—Session 7: Maps, folds, and type classes (again)

17

https://twitter.com/niftierideology/status/1018564372652670976
https://twitter.com/niftierideology/status/1018564372652670976

Attaching implementations to types

Use an instance declaration for the type. &U"\[L (l’lr/

data List a = Nil | Cons a (List a) v

deriving (Eq, Show))Q) '(’_)MWW \ va\/"

instance Functor List where
fmap _ Nil = Nil
fmap f (Cons a tail) = Cons (f a) (fmap f tail)

data BinaryTree a = Leaf a | Node a (BinaryTree a) (BinaryTree a)
deriving (Eq, Show)

instance Functor BinaryTree where

fmap f (Leaf a) = Leaf (f a)
fmap f (Node a 1 r) = Node (f a) (fmap f 1) (fmap f r)

COMP2221—Session 7: Maps, folds, and type classes (again)

18

Generic code

list = Cons 1 (Cons 2 (Cons 4 Nil))
btree = Node 1 (Leaf 2) (Leaf 4)
rtree = RNode 1 [RNode 2 [RLeaf 4]]

-- Generic addil
addl :: (Functor c, Num a) => c a -> Cc a
addl = fmap (+1)

Prelude> addl list

Cons 2 (Cons 3 (Cons 5 Nil))
Prelude> addl btree

Node 2 (Leaf 3) (Leaf 5)
Prelude> addl rtree

RNode 2 [RNode 3 [RLeaf 5]]

COMP2221—Session 7: Maps, folds, and type classes (again) 19

Are all containers Functors?

- It seems like any type that takes a parameter might be a Functor
- This is not necessarily the case, we require more than just
type-correctness

-- A type describing functions from a type to itself
data Fun a = MakeFunction (a -> a)

instance Functor Fun where
fmap f (MakeFunction g) = MakeFunction id

This code type-checks id :: a -> a but does not obey the Functor
laws

1. fmap id c == ¢ Mapping the identity function over a structure
should return the structure untouched.

2. fmap f (fmap g c) == fmap (f . g) c Mapping over a container
should distribute over function composition (since the structure
Is unchanged, it shouldn't matter whether we do this in two
passes or one).

COMP2221—Session 7: Maps, folds, and type classes (again)

20

How many definitions?

- If I come up with a definition of fmap for a type, might there have
been another one?

- No! if you can confirm that the functor laws hold
fmap id == 1id
fmap (f . g) == fmap f . fmap ¢

- then you must have written the right thing!

(oo A5 g
Hfleddh
Vepoded preges
N f‘W
N (S Y

COMP2221—Session 7: Maps, folds, and type classes (again) 21

Correctness of ListMap

data List a = Nil | Cons a (List a) deriving (Eq, Show)

instance Functor List where
fmap _ Nil = Nil
fmap f (Cons x xs) = Cons (f x) (fmap f xs)

To show fmap id == id, need to show
fmap id (Cons x xs) == Cons x xs for any x, xs.

-- Induction hypothesis
fmap id xs = xs
-- Base case
-- apply definition
fmap id Nil = Nil
-- Inductive case
fmap id (Cons x xs) = Cons (id x) (fmap id xs)
== Cons x (fmap id xs)
== Cons X Xxs -- Done!

Exercise: do the same for the second law.

COMP2221—Session 7: Maps, folds, and type classes (again) 22

Foldable data structures

- A data type implementing Functor allows us to take a container
of a’s and turn it into a container of b’s given a function
f::a->b

- Foldable provides a further interface: if | can combine an a and
a b to produce a new b, then, given a start value and a container
of aslcanturnitintoab o CﬂU\“&

class Foldable f where ‘}\J\\/ V\‘B

-- minimal definition requires this
foldr :: (a ->b ->b) ->b ->f a->b

. |4
g E -7

COMP2221—Session 7: Maps, folds, and type classes (again) 23

Interfaces hide implementation details

- Haskell has many type classes in the standard library:
- Num: numeric types
- Eq: equality types
- Ord: orderable types
- Functor: mappable types
- Foldable: foldable types

- If you implement a new data type, it is worthwhile thinking if it
satisfies any of these interfaces

Rationale

- “abstract” interfaces hide implementation details, and permit
generic code

- This is generally good practice when writing software
- (I think) the Haskell approach is quite elegant.

COMP2221—Session 7: Maps, folds, and type classes (again)

24

Building block summary

- Prerequisites: none
- Content

- Motivated writing higher order functions for custom data types

- Recapitulated, and showed more examples, of type classes

- Saw how implementing type class instances for our data types can make
code agnostic to the data structure implementation

- Saw Functor and Foldable type classes, and how they can be used to
make new data types behave like builtin ones

- Expected learning outcomes

- student can implement type class instances for new data types
- student can describe some advantages of this approach

- Self-study

- (Very optional) Chapters 12 & 14 of Hutton’s Programming in Haskell are an
excellent introduction to more of Haskell's “key” type classes

COMP2221—Session 7: Maps, folds, and type classes (again) 25

