
Session 9: Type-driven design
COMP2221: Functional programming

Lawrence Mitchell*

*lawrence.mitchell@durham.ac.uk

COMP2221—Session 9: Type-driven design 1

Introduction

• Haskell offers easy use of quite sophisticated types
• Will discuss some ways of thinking about API design
• Goal is to think about APIs that enforce compile-time correct use

) influence the way you write code in all languages

COMP2221—Session 9: Type-driven design 2

g

provide
a nice sure

to uns of code

want to minimise bugs

Correct merging?

Spot the bug

mergeBy :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
mergeBy _ [] ys = ys
mergeBy _ xs [] = xs
mergeBy cmp (x:xs) (y:ys)
| cmp x y == LT = x : mergeBy cmp xs (y:ys)
| otherwise = y : mergeBy cmp (x:xs) ys

• Only correct if xs and ys were both sorted using cmp!

COMP2221—Session 9: Type-driven design 3

preconditions
are

x s
e ys

must

have
been

sorted

by
Cmp

Correct merging?

Spot the bug

mergeBy :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
mergeBy _ [] ys = ys
mergeBy _ xs [] = xs
mergeBy cmp (x:xs) (y:ys)
| cmp x y == LT = x : mergeBy cmp xs (y:ys)
| otherwise = y : mergeBy cmp (x:xs) ys

• Only correct if xs and ys were both sorted using cmp!

COMP2221—Session 9: Type-driven design 3

would like incorrect calls

to fail at couple tone
could ched

at matric
destroys

correctcomplexity
c

Secure web connections? I

TLS handshake

https://www.cloudflare.com/en-gb/learning/ssl/
what-happens-in-a-tls-handshake/COMP2221—Session 9: Type-driven design 4

https://www.cloudflare.com/en-gb/learning/ssl/what-happens-in-a-tls-handshake/
https://www.cloudflare.com/en-gb/learning/ssl/what-happens-in-a-tls-handshake/

Secure web connections? II

TLS handshake for web security: RSA key exchange

1. The ‘client hello’ message: […]. The message will include […], and
a string of random bytes known as the “client random.”

2. The ‘premaster secret’: The client sends one more random
string of bytes, […] encrypted with the server’s public key […]

What if we forget these things?

COMP2221—Session 9: Type-driven design 5

conditions In correct use

of protocol

Secure web connections? II

TLS handshake for web security: RSA key exchange

1. The ‘client hello’ message: […]. The message will include […], and
a string of random bytes known as the “client random.”

2. The ‘premaster secret’: The client sends one more random
string of bytes, […] encrypted with the server’s public key […]

What if we forget these things?

COMP2221—Session 9: Type-driven design 5

What might an API look like?

Simple Python API

def open(address):
return open_socket(address)

def receive(socket, n):
return socket.read(n)

def send(socket, msg):
return socket.write(len(msg), msg)

COMP2221—Session 9: Type-driven design 6

A first go

s = open(address)
s = send(s, "syn") # syn
ack = receive(s, _) # ack
Send hello
s = send(s, "hello" + random())
Get server cert
cert = receive(s, _)
s = send(s, "secret") # oops!

COMP2221—Session 9: Type-driven design 7

What went wrong?

• Our API has no way of enforcing valid state
• Typical approach to solve this: sprinkle some
assertions/validation through the code

) antipattern since can easily forget things

Better approach
Build the state into the type system, only implement methods on
states that allow them.

COMP2221—Session 9: Type-driven design 8

code runs correctly
without

assets
assert Dara C

What went wrong?

• Our API has no way of enforcing valid state
• Typical approach to solve this: sprinkle some
assertions/validation through the code

) antipattern since can easily forget things

Better approach
Build the state into the type system, only implement methods on
states that allow them.

COMP2221—Session 9: Type-driven design 8

The TLS handshake again

class Conn:
def send_hello(self):
return OpenConn(self.sock,

self.sock.send(...))
class OpenConn:
def receive_cert(self):
return ConnWithCert(self.sock,

self.sock.recv(...))
class ConnWithCert:
def send_premaster(self):
return ConnWithPremaster(self.sock,

self.sock.send(...))

conn = Conn(open(address))
.send_hello()
API requires we
call this
.receive_cert()
before calling this
.send_premaster()

COMP2221—Session 9: Type-driven design 9

Moral

• In Python incorrect method chaining will only be caught at
runtime

• …still better than security holes!
• Idea is to encode state of program in the types
• In statically-typed languages this can be caught at compile time.

This method-chaining pattern is a very popular design pattern
called a fluent interface.

You’ve doubtless seen it in any javascript library you’ve used.

COMP2221—Session 9: Type-driven design 10

y

ke old
Yewtype rather

than data

zoos Moti Fowler
6 i c

Parse, don’t validate

• Another place where type-driven design arises is consuming
“unstructured” data from the outside world and turning it into
something structured

• Prototype might be stream of bytes into JSON
• Two broad options for checking “invalid” data

1. validation: assert data are well-formed (as side-effect)
2. parse-and-continue: assert data are well-formed and return new
type

COMP2221—Session 9: Type-driven design 11

What’s the difference?

• Validation validate :: SomeData -> () can be elided
• Parsing parse :: Unstructured -> Structured cannot

) the conclusions of validation “these data are now valid” cannot
be encoded in the type

• Can’t guarantee downstream correctness

COMP2221—Session 9: Type-driven design 12

valid
at

Prototype: a safe head

safeHead :: [a] -> Maybe a
safeHead (x:_) = Just x
safeHead _ = Nothing
-- Or

data NonEmpty a = Cons a [a]

nonEmpty :: [a] -> Maybe (NonEmpty a)
nonEmpty [] = Nothing
nonEmpty (x:xs) = Just (NonEmpty x xs)

nonEmptyHead :: NonEmpty a -> a
nonEmptyHead (Cons x _) = x

COMP2221—Session 9: Type-driven design 13

total tri affiant head La s a

head E error

4 head A X

Info

I toke fanaticd strengthens type of argueta

What’s the difference

• Suppose we are parsing a list which might be empty, and want
to check that case and then pass it on.

• nonEmpty constructor does the checking, and then delivers a
type that is provably non-empty

) don’t need to check again!
• safeHead approach forces us to always check (because we only
have a [a])

Moral
Encode refinements from validation in the types.

Any check that is required to pass for a program to proceed with
valid data should not be a “side condition”.

COMP2221—Session 9: Type-driven design 14

Back to merging

mergeBy :: (a -> a -> Ordering) -> [a] -> [a] -> [a]
mergeBy _ [] ys = ys
mergeBy _ xs [] = xs
mergeBy cmp (x:xs) (y:ys)
| cmp x y == LT = x : mergeBy cmp xs (y:ys)
| otherwise = y : mergeBy cmp (x:xs) ys

The bug here is rather hard to handle. Want a type

mergeBy ::
({a -> a -> Ordering} cmp) -- Name this parameter
-> SortedBy cmp [a]
-> SortedBy cmp [a]
-> SortedBy cmp [a]

This is just about possible in Haskell 2010, need more sophisticated
types than what we’ve seen (see
https://kataskeue.com/gdp.pdf if you’re keen)

COMP2221—Session 9: Type-driven design 15

list proof that coked
by cap

turds just enough
dependent
types

https://kataskeue.com/gdp.pdf

Concluding remarks

• This is a somewhat philosophical set of slides
• I think that thinking about types and the invariants they capture
is a good way to design APIs.

• If you do this, you will be better than 99% of web framework
developers.

• Many places to go for further reading, ideas here, these are
some nice ones

• Parse, don’t validate https://lexi-lambda.github.io/
blog/2019/11/05/parse-don-t-validate/

• Type state patterns
http://cliffle.com/blog/rust-typestate/

• Ghosts of departed proofs https://kataskeue.com/gdp.pdf
• An introduction to formal methods and proof automation
https://dependenttyp.es/classes/598sp2022.html

COMP2221—Session 9: Type-driven design 16

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
http://cliffle.com/blog/rust-typestate/
https://kataskeue.com/gdp.pdf
https://dependenttyp.es/classes/598sp2022.html

