Last time
Siple model for message exchange tree:

$$
t(m)=\alpha+\beta m
$$

ping-parg.
non-dimiensinialeri relatui to unit of work t_{c}

$$
t^{m a}(m)=\frac{x}{t_{c}}+\frac{\beta m}{t_{c}}
$$

This time
Why can we do parallel at all? \rightarrow Sparsity
How should we desiring grallel datatruchres for $F D$?

Sparsity
Time steppry:

$$
\partial_{t} u-A u=0
$$

Explicit thistrppaj

$$
\begin{aligned}
& \frac{u_{n+1}-u_{n}}{\Delta t}-A u_{n}=0 \\
& u_{n+1}=u_{n}+\Delta t A u_{n}
\end{aligned}
$$

Epphict Euter.

Lupheicit trie steppaj.

$$
\begin{aligned}
& u_{n+1}-\Delta t A u_{n+1}=u_{n} \\
& u_{n+1}=(I-\Delta t A)^{-1} u_{n}
\end{aligned}
$$

luphit Euter.

A is sure matrix. remarkubly, A is very sparie.

Suppore $A=\nabla^{2}$
Then, A couples
Sposents putten

Ouly 5 dieguals are non zero
\Rightarrow consequence:
Explicit schemes we can inpleret purely with loral opertans.

$$
\begin{aligned}
& u_{n+1}=u_{n}+\Delta t A u_{n} \\
& \cdot=\cdot+\Delta t-i+{\text { expmads stanal } t_{0}-i}_{i}^{i} .
\end{aligned}
$$

Imphuit

$$
\text { lumpluat } u_{n+1}=(I-\Delta t A)^{-1} u_{n}
$$

laverse of a spose mahrix is uot necesscilly spose.
But we can Atte firil algivin-s that coupte achi of miserse on a vedor, usits sparse opertinis.

So : we can't make A^{-1}
But torturately we arly reed $A^{-1} u$
\longrightarrow We can mabe this in a sparie manner.
\rightarrow Multignd.
Why is this sporse?
$\overrightarrow{\text { spore Resmution opeetor }} R$ lozal $\begin{aligned} & \text { stemeil }\end{aligned}$ \rightarrow spose Smather: Jacobi smoother \rightarrow poitwin
\rightarrow Prolouscti opestor $P=R^{\top} \quad$ lozal

What doles this mem for iniplemention
Goal total work is N Wish gres like $\frac{N}{P}$ an P processes.

Message exchange is P-independent. well be happy with $\log P$ dependuce.

Allreduce $\rightarrow \log P$

Bindery tree with P leaves has $\log _{2} P$ depth.
So. $\lg P$ pit -to -pot ness-ges do a redact.
\Rightarrow Dort wat any datartumetres that scale with P were happy win $\log P$.

FD gid 5 processes.

Divide sid between process. ideally of equal site.
Bad dion of wo.

Process 0 dres \leqslant
$\frac{N}{2}$ work, eveyone clr does $\frac{N}{8}$.
\Rightarrow NST scalable.

Cashnits: rectanguler potshes
: unrirmise vitoface, regnis
Wout surface-to-viuce ratio of owr subluanis to be as small as possible
x Bald: hist sortace to voluce.

Can phren this problem wi terns of graphs.
Each dot is a vertex edges between coupled dots.
Bert h-pohiinj.
is: Patti graph ito k pees sot. each has the same
\# dots,
minimising the graph cut.
\rightarrow miniminis \# edges that go between partitions.
\rightarrow for regulo grids we dart un this seth.
\rightarrow we do for isregule sids

Parallel decompositi.
Split damai (cube)
into equal (apprax) subcubes. per prozess.
\rightarrow Attempling to bolance worl. Mininibie carnumciation volune (size intertace).

Next the: achully comput-j.

