PSCII: More computativial scaling
Last time saw
String scaling (Amdahi) 1960s
 size, add move resource \rightarrow
 garter.

Modern supercapters have $O\left(10^{6}\right)$ cries.

Weak scaling (Gustafson) 1990s

$$
T_{P}=T_{1}^{\text {local }}+\underbrace{O\left(P T_{l}^{\text {bod }}\right.}_{\text {overhead }}
$$

Fixed local problem size, add mure resource \rightarrow solve bigger problem in sane time.

Putative time on are process is $P T_{1}^{\text {local }}$

Speedup (Amdahl)

$$
\begin{aligned}
S_{p} & =\frac{T_{1}}{T_{p}}=\frac{T_{1}}{f T_{1}-\frac{(1-f) T_{1}}{P}}=\frac{1}{f-\frac{1-f}{P}} \\
= & \quad \frac{f}{(P+1) f-1} \quad \quad S_{p}=\frac{1001 \quad p=100}{10.1-1} \simeq 11
\end{aligned}
$$

Spcedup (Guestafson)

$$
S_{p}=\frac{P T_{1}^{\text {local }}}{T_{1}^{\text {local }}+o(p) T_{1}^{\text {lod }}}=\frac{P}{1+o(p)}
$$

Efticiency
Amdahe $q_{p}=\frac{T_{1}}{P T_{p}}=\frac{1}{(P+1) f-1}$
r cest on p poresses
Qustatson $q_{p}=\frac{p T_{1}^{(\Omega a l}}{\left.p T_{1}^{10 \mu}+o(p) T_{1}^{(0,4)}\right)}=\frac{1}{1+o(p)}$

Why is timiestepping a strong scaling problem?

Parabsic pribleas (ey heat equation)

Stable explicit timèstep is $O\left(h^{2}\right)$ for gird spacing h.
 explicit $\begin{aligned} \text {-uter. }\end{aligned}$
\longrightarrow This is shy explict scteres are turible for pracurde priles.
Hyperbolic prokens (eg advectivi equation)

$$
\text { wrech }^{\text {ante }} \frac{\partial \phi}{\partial t}+\nabla \cdot\left(\phi \frac{u}{\uparrow_{\text {thid ve }}}\right)=f
$$

Ithid ve loits
Stable explicit timestep is o(h).
What's the consequence for parllel cauputing?

Discrete beat equati
\Rightarrow Grid spacis $h \Rightarrow$ answer $\therefore 1 \mathrm{hr}$. On are process.

But now want spacey $\frac{h}{2}$
\Rightarrow In 2D this is $4 x$ work per tieistep.

OK: sounds good. $4 \times \mathrm{wm} /$ histep. But problem is $4 x$ bigger so \Rightarrow use $4 \times$ presses.

Problem for olabitity 1 also need $2 x$ the steps.
So to get the answer in 11 hr , reed to do $4 x$ as many tine reps.
\Rightarrow add more compute
\rightarrow local problem gets smaller (strong scaling)

What are sources of serial fracbai and parallel overhead?

- Communication latency

The b-byte mess- $-x$

- Load inibalance

Each process bakes a dit t ament of the to do local work.
\Rightarrow perhaps \# parl y it sees is deferent.
This creates a "serial fracks".
\Rightarrow For multhigrid this can happen early

Grid-based PDEs: design considerations

- Nothing that is $O(P)$.

Typically you weft have a lookup array that tells you mid press a dst belays to.
\Rightarrow we can never "gather" all the data to a sole press.

- At wort $O(\log P)$ communication complexity.
\rightarrow Nearest neighbour
\rightarrow Multilevel
Stacie app

Stunts ally access a neighborhood
 coassints gris ne compute log P behaviour for lag range stacks
multijnid guises us this, corms fact $2^{d} \quad \sum_{i=1}^{n} \frac{1}{2^{i}}<2$.

Machine characteriotuàs
Messaging:
inverse bandwidth

$$
t(b)=\alpha+\beta b
$$

\Longrightarrow write ping -pong code.

