Session 5: Cache blocking/tiling

COMP52315: performance engineering

Lawrence Mitchell*
*lawrence.mitchell@durham.ac.uk

An exemplar problem

Matrix transpose

$$
B_{i j} \leftarrow A_{j i} \quad A, B \in \mathbb{R}^{n \times n}
$$

double *a, *b;

$$
\begin{aligned}
& \text { for (int } i=0 ; i<N ; i++) \\
& \text { for (int } j=0 ; j<N ; j++) \\
& \quad b[i * N+j]=a[j * N+i] ;
\end{aligned}
$$

So far, we've talked about how to measure performance, and perhaps determine that it is bad.
\Rightarrow what can we do about it?

Matrix transpose: simple performance model

Set up our expectation

- N^{2} loads, N^{2} stores, no compute
\Rightarrow all we're doing is copying data
- Hence we might expect to see performance close to that of the streaming memory bandwidth, independent of matrix size.

Matrix transpose: simple performance model

Set up our expectation

- N^{2} loads, N^{2} stores, no compute
\Rightarrow all we're doing is copying data
- Hence we might expect to see performance close to that of the streaming memory bandwidth, independent of matrix size.

Matrix size	BW [GByte/s]
128×128	22
256×256	13
512×512	13
1024×1024	5
2048×2048	1.6
4096×4096	0.9

What went wrong?

double *a, *b;
for (int i = 0; i < N; i++)
for (int $j=0 ; j<N ; j++$)

$$
b[i * N+j]=a[j * N+i] ;
$$

- We have streaming access to b, but stride- N access to a.
- If both matrices fit in cache, this is OK, and a reasonable model of time is $T_{\text {cache }}=N^{2}\left(t_{\text {read }}+t_{\text {write }}\right)$.
- Note that the reads of a load a full cache line, but use only 8 bytes of it.
- Better model $T_{\text {mem }}=N^{2}\left(8 t_{\text {read }}+t_{\text {write }}\right)$

A picture

Cache locality

- Since we have strided access to a, we need to hold $L N$ bytes in the cache to get any reuse, where L is the cache line size in. This is not possible for large matrices.
- A mechanism to fix this is to reorder the loop iterations to preserve spatial locality.

Idea

- Break loop iteration space into blocks
- strip-mining
- loop reordering

Strip mining

- Break a loop into blocks of consecutive elements

Before

$$
\begin{aligned}
& \text { for (int } i=0 ; i<N ; i++) \\
& \quad a[i]=f(i) ;
\end{aligned}
$$

After

for (int ii = 0; ii < N; ii += stride)
for (int $i=i i ; i<m i n(N, i i+s t r i d e) ; ~ i++)$ $a[i]=f(i)$;

- Not that useful for just a single loop, although there are circumstances where one might use it

Strip mining multiple loops

- Let's do the same for both loops of the transpose:

Before

for (int $\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; $\mathrm{i}++$)
for (int $j=0 ; j<N ; j++$)
$a[i * N+j]=a[j * N+i] ;$

After

for (int ii = 0; ii < N; ii += stridei)
for (int $i=i i ; i<m i n(N, i i+s t r i d e i) ; ~ i++)$
for (int jj = 0; jj < N; jj += stridej)
for (int $j=j j ; j<m i n(N, j j+s t r i d e j) ; ~ j++)$ $b[i * N+j]=a[j * N+i] ;$

- Haven't yet made any change to the performance

Reorder loops

After permuting i and jj loops

for (int ii = 0; ii < N; ii += stridei)
for (int $j j=0 ; j j<N ; j j+=~ s t r i d e j) ~$
for (int i = ii; i < min(N, ii+stridei); i++) for (int $j=j j ; j<\min (N, j j+s t r i d e j) ; ~ j++)$ $b[i * N+j]=a[j * N+i] ;$

- Two free parameters stridei and stridej
- Need to choose these appropriately to levels in the cache hierarchy
- Ideally block for L1, L2, L3, etc...
- The extra logic adds some overhead

Why is it "tiling"?

Iteration over B.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| 32 | 33 | 34 | 35 | 36 | 37 | 30 | 39 |
| 40 | 4 | 42 | 43 | 44 | 45 | 46 | 47 |
| 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |
| 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 | 45 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
| 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
| 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 |
| 56 | 57 | 50 | 59 | 60 | 61 | 62 | 63 |

Why is it "tiling"?

Iteration over A.

Does it work?

- Have a go, I provide some sample code for which you can tune the blocking parameters.
\Rightarrow Exercise 7.

A second problem

Matrix-Matrix multiplication

$$
\begin{aligned}
& \qquad C_{i j} \leftarrow C_{i j}+\sum_{k} A_{i k} B_{k j} A, B, C \in \mathbb{R}^{n \times n} \\
& \text { for (int } i=0 ; i<n ; i++ \text {) } \\
& \text { for (int } j=0 ; j<n ; j++ \text {) } \\
& \text { for (int } k=0 ; k<n ; k++) \\
& \qquad C[i * n+j]+=A[i * n+k] * B[k * n+j] ;
\end{aligned}
$$

Same story here (or at least it was in the 90s!).

(Another) simple model for computation

- Simple model of memory, two levels: "fast" and "slow"
- Initially all data in slow memory
m number of data elements moved between fast and slow memory
t_{m} time per slow memory operation
f number of flops
$t_{f} \ll t_{m}$ time per flop
$q=: f / m$ average flops per slow memory access
- Minimum time to solution (all data in fast memory)

$$
t_{f} f
$$

- Typical time

$$
f t_{f}+m t_{m}=f t_{f}\left(1+\frac{t_{m}}{t_{f}} \frac{1}{q}\right)
$$

- t_{m} / t_{f} property of hardware, q property of algorithm

Naïve matrix-multiply

```
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
        for (int k = 0; k < n; k++)
            C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];
```

- Algorithm does $2 n^{3}=\mathcal{O}\left(n^{3}\right)$ flops and touches $3 \cdot 8 n^{2}$ bytes of memory
- q potentially $\mathcal{O}(n)$, arbitrarily large for large n.

Naïve matrix-multiply

```
for (int i = 0; i < n; i++)
    // Read row i of A into fast memory
    for (int j = 0; j < n; j++)
    // Read Cij into fast memory
    // Read column j of B into fast memory
    for (int k = 0; k < n; k++)
            C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];
        // Write Cij back to slow memory
```

$C_{i j}$
$C_{i j}$
A_{i}

Naïve matrix-multiply

Number of slow memory references

$$
\begin{aligned}
m & =n^{3} \quad \text { each column of } B \text { is read } n \text { times } \\
& +n^{2} \quad \text { each row of } A \text { is read } n \text { once } \\
& +2 n^{2} \quad \text { each entry of } C \text { is read once and written once } \\
& =\left(n^{3}+3 n^{2}\right)
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} q=\frac{f}{m}=\frac{2 n^{3}}{\left(n^{3}+3 n^{2}\right)}=2
$$

From model to prediction

- So for a triply-nested loop structure, the best time to solution our model predicts is:

$$
T=t_{f} f\left(1+\frac{t_{m}}{2 t_{f}}\right)
$$

- Recall that on modern hardware, memory latency is around 200 cycles per cache line. So let's approximate $t_{m} \approx 200 / 8=25$, and say $t_{f}=1$.

$$
T=t_{f} f(1+25 / 2)=13.5 t_{f} f
$$

- Maximally 7\% peak.
- This is only an estimate.

Measurement

- Single core Intel i5-8259U.
- 2 4-wide FMAs per cycle $\Rightarrow 16$ DP FLOPs/cycle.
\Rightarrow Peak is $3.6 \cdot 16=57.6$ GFLOPs $/ \mathrm{s}$, model predicts $4.03 \mathrm{GFLOPs} / \mathrm{s}$.

How to improve reuse?

- Problem is that we move rows and columns into fast memory, and then evict them
- Need way of keeping the loaded data in fast memory as long as possible.
\Rightarrow tile iterations

```
// Treat A, B,C\in( }\mp@subsup{\mathbb{R}}{}{b\timesb}\mp@subsup{)}{}{N\timesN
// that is, N N N matrices where each entry is a b < b matrix.
for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
    // Read block Cij into fast memory
        for (int k = 0; k < n; k++)
            // Read block Ajk into fast memory
            // Read block B}\mp@subsup{B}{kj}{}\mathrm{ into fast memory
            // Do matrix multiply on the blocks
            C[i*N + j] = C[i*N + j] + A[i*N + k] * B[k*N + j];
        // Write block C Cij back to slow memory
```


How to improve reuse?

- Problem is that we move rows and columns into fast memory, and then evict them
- Need way of keeping the loaded data in fast memory as long as possible.
\Rightarrow tile iterations

```
// Treat A,B,C\in( }\mp@subsup{\mathbb{R}}{}{b\timesb}\mp@subsup{)}{}{N\timesN
// that is, N\timesN matrices where each entry is a b b b matrix.
for (int ii = 0; ii < N; ii++)
    for (int jj = 0; jj < N; jj++)
        for (int kk = 0; kk < N; kk++)
        for (int i_ = 0; i_ < b; i_++)
            for (int j_ = 0; j_ < b; j_++)
                for (int k_ = 0; k_ < b; k_++) {
                const int i = ii*b + i_;
                const int j = jj*b + j_;
                const int k = kk*b + k_;
                C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];
            }
```


What did that do to the data movement?

$$
\begin{aligned}
m & =N n^{2} \quad \text { each block of } B \text { is read } N^{3} \text { times } \Rightarrow N^{3} b^{2}=N^{3}(n / N)^{2}=N n^{2} \\
& +N n^{2} \quad \text { each block of } A \text { is read } N^{3} \text { times } \\
& +2 n^{2} \quad \text { each block of } C \text { is read once and written once } \\
& =2 n^{2}(N+1)
\end{aligned}
$$

Hence

$$
\lim _{n \rightarrow \infty} q=\frac{f}{m}=\frac{2 n^{3}}{2 n^{2}(N+1)}=\frac{n}{N}=b
$$

- $b \gg 2$ so much better than previously. Can improve performance by increasing b as long as blocks still fit in fast memory!
- Detailed analysis of blocked algorithms in Lam, Rothberg, and Wolf The Cache Performance and Optimization of Blocked Algorithms (1991)

From model to machine characteristics

- Arbitrarily choose a "fast" algorithm to be $\geq 50 \%$ peak, this requires

$$
f t_{f}\left(1+\frac{t_{m}}{t_{f}} \frac{1}{q}\right) \leq 2 t_{f} f \Leftrightarrow \frac{t_{m}}{t_{f}} \frac{1}{q} \leq 1 \Leftrightarrow q \geq \frac{t_{m}}{t_{f}}
$$

- Again, approximate $t_{m}=25, t_{f}=1$
$\Rightarrow b \approx q \geq 25$.
- Need to hold all three $b \times b$ matrices in cache
\Rightarrow Need space for $3 b^{2}=3 \cdot 25^{2}=1875$ matrix entries, approximately 14.6 KB of fast memory $M_{\text {fast }}$.
- This is smaller than L1, but larger than fits in registers.

Is this the best we can do?

Theorem

Hong and Kung (1981) Any reorganization of this algorithm that only exploits associativity has

$$
q=\mathcal{O}\left(\sqrt{M_{\text {fast }}}\right)
$$

and the number of data elements moved between slow and fast memory is

$$
\Omega\left(\frac{n^{3}}{\sqrt{M_{\text {fast }}}}\right)
$$

- Exact values for the bounds are not known, the best bounds are provided by Smith and van de Geijn (2017) arXiv: 1702.02017 [cs.CC]
- The GotoBLAS/OpenBLAS approach approaches these bounds.

Matching reality with models

- I provide some sample code that implements this scheme \Rightarrow Exercise 8.

Is this the best we can do?

Is this the best we can do?

What accounts for this difference?

- Managed to get big matrices to behave like small ones with naive code.
\Rightarrow reaching in-cache performance of the starting point.
- For better results, need to

1. Block for registers and all levels of cache
2. Perform data-layout transformation to promote (better) vectorisation

- Will look more at data layout transforms next time.

Summary

- Loop tiling can significantly improve performance of nested loops.
- Particularly important to exploit data reuse.
- For the "last mile" we have to do more. Mostly the same idea, but thinking hard about data layout and explicit vectorisation.
- Simple models can be used to motivate whether things are worth trying.

