
Session 5: Cache blocking/tiling
COMP52315: performance engineering

Lawrence Mitchell*

*lawrence.mitchell@durham.ac.uk

COMP52315—Session 5: Cache blocking/tiling 1

An exemplar problem

Matrix transpose

Bij ← Aji A,B ∈ Rn×n

double *a, *b;
...
for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)
b[i*N + j] = a[j*N + i];

So far, we’ve talked about how to measure performance, and perhaps
determine that it is bad.

⇒ what can we do about it?

COMP52315—Session 5: Cache blocking/tiling 2

Matrix transpose: simple performance model

Set up our expectation

• N2 loads, N2 stores, no compute
⇒ all we’re doing is copying data
• Hence we might expect to see performance close to that of the
streaming memory bandwidth, independent of matrix size.

Matrix size BW [GByte/s]

128× 128 22
256× 256 13
512× 512 13
1024× 1024 5
2048× 2048 1.6
4096× 4096 0.9

COMP52315—Session 5: Cache blocking/tiling 3

Matrix transpose: simple performance model

Set up our expectation

• N2 loads, N2 stores, no compute
⇒ all we’re doing is copying data
• Hence we might expect to see performance close to that of the
streaming memory bandwidth, independent of matrix size.

Matrix size BW [GByte/s]

128× 128 22
256× 256 13
512× 512 13
1024× 1024 5
2048× 2048 1.6
4096× 4096 0.9

COMP52315—Session 5: Cache blocking/tiling 3

What went wrong?

double *a, *b;
...
for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)
b[i*N + j] = a[j*N + i];

• We have streaming access to b, but stride-N access to a.
• If both matrices fit in cache, this is OK, and a reasonable model of time
is Tcache = N2(tread + twrite).

• Note that the reads of a load a full cache line, but use only 8 bytes of
it.

• Better model Tmem = N2(8tread + twrite)

COMP52315—Session 5: Cache blocking/tiling 4

A picture

i

j

B i

j

A

COMP52315—Session 5: Cache blocking/tiling 5

Cache locality

• Since we have strided access to a, we need to hold LN bytes in the
cache to get any reuse, where L is the cache line size in. This is not
possible for large matrices.

• A mechanism to fix this is to reorder the loop iterations to preserve
spatial locality.

Idea

• Break loop iteration space into blocks
• strip-mining
• loop reordering

COMP52315—Session 5: Cache blocking/tiling 6

Strip mining

• Break a loop into blocks of consecutive elements

Before

for (int i = 0; i < N; i++)
a[i] = f(i);

After

for (int ii = 0; ii < N; ii += stride)
for (int i = ii; i < min(N, ii + stride); i++)

a[i] = f(i);

• Not that useful for just a single loop, although there are circumstances
where one might use it

COMP52315—Session 5: Cache blocking/tiling 7

Strip mining multiple loops

• Let’s do the same for both loops of the transpose:

Before

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

a[i*N + j] = a[j*N + i];

After

for (int ii = 0; ii < N; ii += stridei)
for (int i = ii; i < min(N, ii+stridei); i++)

for (int jj = 0; jj < N; jj += stridej)
for (int j = jj; j < min(N, jj+stridej); j++)

b[i*N + j] = a[j*N + i];

• Haven’t yet made any change to the performance

COMP52315—Session 5: Cache blocking/tiling 8

Reorder loops

After permuting i and jj loops

for (int ii = 0; ii < N; ii += stridei)
for (int jj = 0; jj < N; jj += stridej)

for (int i = ii; i < min(N, ii+stridei); i++)
for (int j = jj; j < min(N, jj+stridej); j++)

b[i*N + j] = a[j*N + i];

• Two free parameters stridei and stridej
• Need to choose these appropriately to levels in the cache hierarchy
• Ideally block for L1, L2, L3, etc…
• The extra logic adds some overhead

COMP52315—Session 5: Cache blocking/tiling 9

Why is it “tiling”?

Iteration over B.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

COMP52315—Session 5: Cache blocking/tiling 10

Why is it “tiling”?

Iteration over A.

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

COMP52315—Session 5: Cache blocking/tiling 11

Does it work?

• Have a go, I provide some sample code for which you can tune the
blocking parameters.

⇒ Exercise 7.

COMP52315—Session 5: Cache blocking/tiling 12

A second problem

Matrix-Matrix multiplication

Cij ← Cij +
∑
k

AikBkj A,B, C ∈ Rn×n

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
C[i*n + j] += A[i*n + k] * B[k*n + j];

Same story here (or at least it was in the 90s!).

COMP52315—Session 5: Cache blocking/tiling 13

(Another) simple model for computation

• Simple model of memory, two levels: “fast” and “slow”
• Initially all data in slow memory

m number of data elements moved between fast and slow memory
tm time per slow memory operation
f number of flops

tf � tm time per flop
q =: f/m average flops per slow memory access

• Minimum time to solution (all data in fast memory)

tf f

• Typical time

ftf +mtm = ftf
(
1+ tm

tf
1
q

)
• tm/tf property of hardware, q property of algorithm

COMP52315—Session 5: Cache blocking/tiling 14

Naïve matrix-multiply

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];

• Algorithm does 2n3 = O(n3) flops and touches 3 · 8n2 bytes of memory
• q potentially O(n), arbitrarily large for large n.

Cij
=

Cij
+

Ai
×

Bj

COMP52315—Session 5: Cache blocking/tiling 15

Naïve matrix-multiply

for (int i = 0; i < n; i++)
// Read row i of A into fast memory
for (int j = 0; j < n; j++)
// Read Cij into fast memory
// Read column j of B into fast memory
for (int k = 0; k < n; k++)
C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];

// Write Cij back to slow memory

Cij
=

Cij
+

Ai
×

Bj

COMP52315—Session 5: Cache blocking/tiling 15

Naïve matrix-multiply

Number of slow memory references

m = n3 each column of B is read n times
+ n2 each row of A is read n once
+ 2n2 each entry of C is read once and written once
= (n3 + 3n2)

Hence
lim
n→∞

q =
f
m

=
2n3

(n3 + 3n2)
= 2

Cij
=

Cij
+

Ai
×

Bj

COMP52315—Session 5: Cache blocking/tiling 15

From model to prediction

• So for a triply-nested loop structure, the best time to solution our
model predicts is:

T = tf f
(
1+ tm

2tf

)
• Recall that on modern hardware, memory latency is around 200 cycles
per cache line. So let’s approximate tm ≈ 200/8 = 25, and say tf = 1.

T = tf f (1+ 25/2) = 13.5tf f

• Maximally 7% peak.
• This is only an estimate.

COMP52315—Session 5: Cache blocking/tiling 16

Measurement

• Single core Intel i5-8259U.
• 2 4-wide FMAs per cycle⇒ 16 DP FLOPs/cycle.
⇒ Peak is 3.6 · 16 = 57.6 GFLOPs/s, model predicts 4.03GFLOPs/s.

0 1,000 2,000 3,000

5

10

15

Matrix size

GF
lo
p/
s

Triple loop
Model

COMP52315—Session 5: Cache blocking/tiling 17

How to improve reuse?

• Problem is that we move rows and columns into fast memory, and
then evict them

• Need way of keeping the loaded data in fast memory as long as
possible.

⇒ tile iterations

// Treat A, B, C ∈
(
Rb×b

)N×N

// that is, N× N matrices where each entry is a b× b matrix.
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
// Read block Cij into fast memory
for (int k = 0; k < n; k++)
// Read block Aik into fast memory
// Read block Bkj into fast memory
// Do matrix multiply on the blocks
C[i*N + j] = C[i*N + j] + A[i*N + k] * B[k*N + j];

// Write block Cij back to slow memory

COMP52315—Session 5: Cache blocking/tiling 18

How to improve reuse?

• Problem is that we move rows and columns into fast memory, and
then evict them

• Need way of keeping the loaded data in fast memory as long as
possible.

⇒ tile iterations

// Treat A, B, C ∈
(
Rb×b

)N×N

// that is, N× N matrices where each entry is a b× b matrix.
for (int ii = 0; ii < N; ii++)
for (int jj = 0; jj < N; jj++)
for (int kk = 0; kk < N; kk++)
for (int i_ = 0; i_ < b; i_++)
for (int j_ = 0; j_ < b; j_++)
for (int k_ = 0; k_ < b; k_++) {

const int i = ii*b + i_;
const int j = jj*b + j_;
const int k = kk*b + k_;
C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];

}

COMP52315—Session 5: Cache blocking/tiling 18

What did that do to the data movement?

m = Nn2 each block of B is read N3 times⇒ N3b2 = N3(n/N)2 = Nn2

+ Nn2 each block of A is read N3 times
+ 2n2 each block of C is read once and written once
= 2n2(N+ 1)

Hence
lim
n→∞

q =
f
m

=
2n3

2n2(N+ 1)
=
n
N

= b

• b� 2 so much better than previously. Can improve performance by
increasing b as long as blocks still fit in fast memory!

• Detailed analysis of blocked algorithms in Lam, Rothberg, and Wolf The
Cache Performance and Optimization of Blocked Algorithms (1991)

COMP52315—Session 5: Cache blocking/tiling 19

From model to machine characteristics

• Arbitrarily choose a “fast” algorithm to be ≥ 50% peak, this requires

ftf
(
1+ tm

tf
1
q

)
≤ 2tf f ⇔

tm
tf
1
q
≤ 1⇔ q ≥ tm

tf

• Again, approximate tm = 25, tf = 1
⇒ b ≈ q ≥ 25.
• Need to hold all three b× b matrices in cache
⇒ Need space for 3b2 = 3 · 252 = 1875 matrix entries, approximately

14.6KB of fast memory Mfast.
• This is smaller than L1, but larger than fits in registers.

COMP52315—Session 5: Cache blocking/tiling 20

Is this the best we can do?

Theorem
Hong and Kung (1981) Any reorganization of this algorithm that only
exploits associativity has

q = O(
√
Mfast)

and the number of data elements moved between slow and fast memory
is

Ω

(
n3√
Mfast

)

• Exact values for the bounds are not known, the best bounds are
provided by Smith and van de Geijn (2017) arXiv: 1702.02017
[cs.CC]

• The GotoBLAS/OpenBLAS approach approaches these bounds.

COMP52315—Session 5: Cache blocking/tiling 21

Matching reality with models

• I provide some sample code that implements this scheme
⇒ Exercise 8.

COMP52315—Session 5: Cache blocking/tiling 22

Is this the best we can do?

0 1,000 2,000 3,000

10

20

30

Matrix size

GF
lo
p/
s

Triple loop
Tiled

Tiled packed
Model

COMP52315—Session 5: Cache blocking/tiling 23

Is this the best we can do?

0 1,000 2,000 3,000
0

20

40

60

Matrix size

GF
lo
p/
s

Triple loop
Tiled

Tiled packed
Model

OpenBLAS
Machine peak

COMP52315—Session 5: Cache blocking/tiling 24

What accounts for this difference?

• Managed to get big matrices to behave like small ones with naive code.
⇒ reaching in-cache performance of the starting point.
• For better results, need to

1. Block for registers and all levels of cache
2. Perform data-layout transformation to promote (better) vectorisation

• Will look more at data layout transforms next time.

COMP52315—Session 5: Cache blocking/tiling 25

Summary

• Loop tiling can significantly improve performance of nested loops.
• Particularly important to exploit data reuse.
• For the “last mile” we have to do more. Mostly the same idea, but
thinking hard about data layout and explicit vectorisation.

• Simple models can be used to motivate whether things are worth
trying.

COMP52315—Session 5: Cache blocking/tiling 26

