Session 5: Cache blocking/tiling
COMP52315: performance engineering

Lawrence Mitchell”

“lawrence.mitchell@durham.ac.uk

COMP52315—Session 5: Cache blocking/tiling

An exemplar problem

Matrix transpose
BU = Aj,' A Be R™"
double *a, =*b;
for (int i = 0; 1 < N; i++)

for (int j = 0; j < N; j++)
b[i*N + j] = a[j*N + il;

So far, we've talked about how to measure performance, and perhaps
determine that it is bad.

= what can we do about it?

COMP52315—Session 5: Cache blocking/tiling 2

Matrix transpose: simple performance model

Set up our expectation

- N? loads, N? stores, no compute

= all we're doing is copying data

- Hence we might expect to see performance close to that of the
streaming memory bandwidth, independent of matrix size.

COMP52315—Session 5: Cache blocking/tiling

Matrix transpose: simple performance model

Set up our expectation

- N? loads, N? stores, no compute

= all we're doing is copying data

- Hence we might expect to see performance close to that of the
streaming memory bandwidth, independent of matrix size.

Matrix size BW [GByte/s]

128 x 128 22
256 x 256 13
512 x 512 13
1024 x 1024 5
2048 x 2048 1.6
4096 x 4096 0.9

COMP52315—Session 5: Cache blocking/tiling

What went wrong?

double *xa, =*b;

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
b[i*N + j] = a[j*N + i];

- We have streaming access to b, but stride-N access to a.

- If both matrices fit in cache, this is OK, and a reasonable model of time
is Tcache = N2(tread + tvvrite)'

- Note that the reads of a load a full cache line, but use only 8 bytes of
It.

- Better model Tmem = N?(8tread + twrite)

COMP52315—Session 5: Cache blocking/tiling 4

A picture

\4
A\

YV V[V[V V[V V¥V V[V[V V¥V

COMP52315—Session 5: Cache blocking/tiling 5

Cache locality

- Since we have strided access to a, we need to hold LN bytes in the
cache to get any reuse, where L is the cache line size in. This is not
possible for large matrices.

- A mechanism to fix this is to reorder the loop iterations to preserve
spatial locality.
Idea

- Break loop iteration space into blocks
- strip-mining
- loop reordering

COMP52315—Session 5: Cache blocking/tiling 6

- Break a loop into blocks of consecutive elements

for (int i = 0; i < N; i++)
alil = f(1);

for (int ii = 0; ii < N; ii += stride)
for (int i = ii; i < min(N, i1i + stride); i++)
ali] = f(1);

- Not that useful for just a single loop, although there are circumstances
where one might use it

COMP52315—Session 5: Cache blocking/tiling 7

Strip mining multiple loops

- Let's do the same for both loops of the transpose:

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
ali*N + j] = a[j*N + il;

for (int ii = 0; ii < N; ii += stridei)
for (int i = ii; i < min(N, ii+stridei); i++)
for (int jj = 0; jj < N; jj += stridej)
for (int j = jj; j < min(N, jj+stridej); j++)
b[ixN + j] = a[j=N + i];

- Haven't yet made any change to the performance

COMP52315—Session 5: Cache blocking/tiling 8

Reorder loops

After permuting i and jj loops

for (int ii = 0; ii < N; ii += stridei)
for (int jj = 0; jj < N; jj += stridej)
for (int i = ii; i < min(N, ii+stridei); i++)
for (int j = jj; j < min(N, jj+stridej); j++)
b[i*N + j] = a[j*N + il;

- Two free parameters stridei and stridej

- Need to choose these appropriately to levels in the cache hierarchy
- Ideally block for 11, L2, L3, etc...

- The extra logic adds some overhead

COMP52315—Session 5: Cache blocking/tiling

Why is it “tiling”?

Iteration over B.

——2—3——4—5—6—
S a5
16—=——0—36—51—=22- 73
2625775 5202631
3233 6372939
LO—t—L7 43— bbb bT
48850 5455
56==57—"58 —60—=6 S, 63

COMP52315—Session 5: Cache blocking/tiling 10

Why is it “tiling”?

Iteration over A.

0 3 ‘ 6 0 5
o, 9 0 2 3 5 3 9 1 5
16 N 18 /19 0 /21 22 |28 16 22 3
24125 |26 28 /29 /30 /31 2% 2 30 31
32/ 33/ 3/ 35/ 36/ 37/ 38/ 39 37 8 39
0 41 3 5/ 46 40 /41 6 /47
'1', r"‘ "I 5 5 ": 5 5 8/ 49 5
56 58 59 60 6 62 6 50 5 62 63

COMP52315—Session 5: Cache blocking/tiling N

- Have a go, | provide some sample code for which you can tune the
blocking parameters.

= Exercise 7.

COMP52315—Session 5: Cache blocking/tiling 12

A second problem

Matrix-Matrix multiplication
C,'j — C,'j aF ZA,‘/?B/?}- A B,C e RN
R
for (int i = 0; 1 < n; i++)
for (int j = 0; j < n; j++)

for (int k = 0; k < n; k++)
C[i*n + j] += A[i*n + k] * B[k*n + jI;

Same story here (or at least it was in the 90s!).

COMP52315—Session 5: Cache blocking/tiling 13

(Another) simple model for computation

- Simple model of memory, two levels: “fast” and “slow”

- Initially all data in slow memory
m number of data elements moved between fast and slow memory
tm time per slow memory operation
f number of flops
tr < tm time per flop
g =: f/m average flops per slow memory access

-+ Minimum time to solution (all data in fast memory)
tef
- Typical time

tm 1
fte + mto = ftg (1 + ”’)
tr g

- tm/ty property of hardware, g property of algorithm

COMP52315—Session 5: Cache blocking/tiling 14

Naive matrix-multiply

for (int i = 0; 1 < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
Cli*n + j1 = C[i*n + j1 + A[i*n + k] = B[k#*n + jI;

- Algorithm does 2n® = O(n®) flops and touches 3 - 8n? bytes of memory
- q potentially O(n), arbitrarily large for large n.

COMP52315—Session 5: Cache blocking/tiling 15

Naive matrix-multiply

for (int i = 0; i < n; i++)

// Read row i of A into fast memory

for (int j = 0; j < n; j++)
// Read Cj into fast memory
// Read column j of B into fast memory
for (int k = 0; k < n; k++)

Cli*n + 31 = Cli*n + j1 + A[i*n + k] = B[k#n + jI;

// Write C; back to slow memory

COMP52315—Session 5: Cache blocking/tiling

Naive matrix-multiply

Number of slow memory references
m =n® each column of B is read n times
+n? each row of A is read n once

+2n? each entry of C is read once and written once

= (n* +3n?)
Hence
i _f)
9= m T e
= —|— X

COMP52315—Session 5: Cache blocking/tiling 15

From model to prediction

- So for a triply-nested loop structure, the best time to solution our

model predicts is:
tm
T=tf |1+ =
d < i 2tf>

- Recall that on modern hardware, memory latency is around 200 cycles
per cache line. So let’s approximate tp, ~ 200/8 = 25, and say t; = 1.

T = tf(1+425/2) = 13.5;f

- Maximally 7% peak.
- This is only an estimate.

COMP52315—Session 5: Cache blocking/tiling 16

Measurement

- Single core Intel i5-8259U.
- 2 4-wide FMAs per cycle = 16 DP FLOPs/cycle.
= Peak is 3.6 - 16 = 57.6 GFLOPs/s, model predicts 4.03GFLOPs/s.

—e— Triple loop
— Model
15 |- H
%]
a
(@]
T 10 8
O
5 - |
|

| | |
0 1,000 2,000 3,000

Matrix size

COMP52315—Session 5: Cache blocking/tiling

How to improve reuse?

- Problem is that we move rows and columns into fast memory, and
then evict them
- Need way of keeping the loaded data in fast memory as long as
possible.
= tile iterations

// Treat A,B,C € (R"X")M”‘
// that is, N x N matrices where each entry is a b x b matrix.
for (int i = 0; 1 < N; i++)
for (int j = 0; j < Nj j++)
// Read block Cj into fast memory
for (int k = 0; k < n; k++)
// Read block Ay, into fast memory
// Read block By into fast memory
// Do matrix multiply on the blocks
C[i*N + j] = C[i*N + j1 + A[i*N + k] = B[k*N + jI;
// Write block C; back to slow memory

COMP52315—Session 5: Cache blocking/tiling

How to improve reuse?

- Problem is that we move rows and columns into fast memory, and
then evict them

- Need way of keeping the loaded data in fast memory as long as
possible.

= tile iterations

Lo\ NXN
// Treat A,B,C (R”X”) "

// that is, N x N matrices where each entry is a b x b matrix.
for (int ii = 0; ii < N; ii++)
for (int jj = 0; jj < Nj Jj++)
for (int kk = 0; kk < N; kk++)
for (int i_ = 0; i_ < b; i_++)
for (int j_ = 0; j_ < b; j_++)
for (int k_ = 0; k_ < b; k_++) {

const int i = iixb + i_;
const int j = jj*b + j_;
const int k = kk*b + k_;
Cli*n + j] = C[i*n + j1 + A[li*n + k] = B[k*n + jI;

COMP52315—Session 5: Cache blocking/tiling 18

What did that do to the data movement?

m = Nn? each block of B is read N° times = N°b? = N*(n/N)? = Nn?
+ Nn? each block of A is read N° times
+2n% each block of C is read once and written once
=2n*(N+1)
Hence
2n3 n

e T () =§=0b

- b > 2 so much better than previously. Can improve performance by
increasing b as long as blocks still fit in fast memory!

- Detailed analysis of blocked algorithms in Lam, Rothberg, and Wolf The
Cache Performance and Optimization of Blocked Algorithms (1991)

COMP52315—Session 5: Cache blocking/tiling 19

From model to machine characteristics

- Arbitrarily choose a “fast” algorithm to be > 50% peak, this requires
tm 1 tm 1 tm
ft <1+) 2tf<:>—f<1<:>qz—
! tr g 4 tr g i
- Again, approximate ty = 25, t; =1
= b=x~qg>25
- Need to hold all three b x b matrices in cache

= Need space for 3b? = 3 - 25? = 1875 matrix entries, approximately
14.6KB of fast memory Ms.:.

- This is smaller than L1, but larger than fits in registers.

COMP52315—Session 5: Cache blocking/tiling 20

Is this the best we can do?

Theorem
Hong and Kung (1981) Any reorganization of this algorithm that only

exploits associativity has
q= O(\/ Mfast)

and the number of data elements moved between slow and fast memory
is

()

- Exact values for the bounds are not known, the best bounds are
provided by Smith and van de Geijn (2017) arXiv: 1702.02017
[cs.CC]

- The GotoBLAS/OpenBLAS approach approaches these bounds.

COMP52315—Session 5: Cache blocking/tiling 21

Matching reality with models

- | provide some sample code that implements this scheme

= Exercise 8.

COMP52315—Session 5: Cache blocking/tiling 22

Is this the best we can do?

30 || —e— Triple loop
—-— Tiled
—o— Tiled packed
20 | | m— Model

GFlop/s

| | |
0 1,000 2,000 3,000
Matrix size

COMP52315—Session 5: Cache blocking/tiling 23

Is this the best we can do?

60 | cciceccececesessaee-a- || —e— Triple loop
- Tiled
—e— Tiled packed
w 40F || = Model
él —s— OpenBLAS
s ‘J ==== Machine peak
20 - i i ; ; N
0 e

| | | |
0 1,000 2,000 3,000
Matrix size

COMP52315—Session 5: Cache blocking/tiling 24

What accounts for this difference?

- Managed to get big matrices to behave like small ones with naive code.
= reaching in-cache performance of the starting point.
- For better results, need to

1. Block for registers and all levels of cache
2. Perform data-layout transformation to promote (better) vectorisation

- Will look more at data layout transforms next time.

COMP52315—Session 5: Cache blocking/tiling 25

- Loop tiling can significantly improve performance of nested loops.
- Particularly important to exploit data reuse.

- For the “last mile” we have to do more. Mostly the same idea, but
thinking hard about data layout and explicit vectorisation.

- Simple models can be used to motivate whether things are worth
trying.

COMP52315—Session 5: Cache blocking/tiling 26

