Session 1: Introduction & Overview

COMP52315: performance engineering

Lawrence Mitchell”

"lawrence.mitchell@durham.ac.uk

COMP52315—Session 1: Introduction & Overview

Introduction

What is the course about?

Saw (in Core I: High Performance Computing) different parallel
programming paradigms.

Parallelism helps to improve performance (runtime) of a code.

Given some code, which | would like to make faster, how do | know what
to do?

Qe bdes 1 day.
Cpn & e an how.

COMP52315—Session 1: Introduction & Overview

What is the course about?

Saw (in Core I: High Performance Computing) different parallel
programming paradigms.

Parallelism helps to improve performance (runtime) of a code.

Question
Given some code, which | would like to make faster, how do | know what
to do?

Performance models & measurements
We can treat the computer as an experimental system

= perform measurements of the performance $ l& }/L_,_/L A‘ﬂaf
= construct models that explain performance 4 hesz "

= apply appropriate optimisations

COMP52315—Session 1: Introduction & Overview 2

Course overview (not in order, approximate)

- Computer architecture overview

- Fundamentals of performance engineering
- Tools: CPU topology and affinity

- Roofline performance model

- Tools: Performance counters

- Vectorisation (SIMD programming)

- Data layout transformations

COMP52315—Session 1: Introduction & Overview 3

What you need

- The toolchain we'll use is available on Linux machines (but not
Windows/Mac)

- | recommend using Hamilton (you should already have accounts from
Core 1)

= Short howto is available in Core | (High performance computing)
section on DUO. Exercises will also recap some of this material.

COMP52315—Session 1: Introduction & Overview 4

Resources in stored program
computers

Hardware for programmers
[Program code]
I e

Data transfers
Secondary work

P

Memory

Primary work

ﬁ Control Unit] Load/Store unlt

| 3
Instruct.lon Execution Unit]

execution

COMP52315—Session 1: Introduction & Overview 5

Resource bottlenecks: instructions

Instruction execution
How fast the CPU retires instructions.

Primary resource of the processor. Primary hardware design goal is to
increase instruction throughput (instructions/second).

Instructions are “work”™ as seen by processor designers.

Not all instructions are considered “work” by software developers (you!).

COMP52315—Session 1: Introduction & Overview 6

Resource bottlenecks: instructions

dovble o7 .Y, b7 -2

Adding two arrays
—for (int 1 = 0; i < N; i++)
"~ ali] = a[i] + b[il;

User view Processor view

Work is N flops (additions) Work is 6N instructions
.top
LOAD r1 = ali]
LOAD r2 = b[i]
ADD rl1 = rl1 + r2

STORE a[i] = ri1
INCREMENT 1
GOTO .top IF 1 < N

COMP52315—Session 1: Introduction & Overview 7

Resource bottlenecks: data transfer

Data Transfer

Data movement (from memory to CPU and back) is a consequence of
Instruction execution and considered a secondary resource. Maximum
bandwidth (bytes/second) determined by rate at which load/store
Instructions can be executed and hardware limits.

Data movement adding two arrays
for (int 1 = 0; i < N; i++) AJVLQLL- 'Qlﬂ")
ali] = ali] + blil; AnXle b/ ..7)

Data transfers: _~ m% ﬂ ka) - K

LOAD r1 = a[i] /* 8 bytes =/
LOAD r2 = b[i] /* 8 bytes =/
STORE a[i] = r1 /* 8 bytes =/

24 bytes of data movement per loop iteration.

COMP52315—Session 1: Introduction & Overview 8

Core question

To understand the performance of some code we must answer

What Is the resource bottleneck?

- Data transfer?

- |Instruction execution?

COMP52315—Session 1: Introduction & Qverview 9

To understand the performance of some code we must answer

What Is the resource bottleneck?

- Data transfer?

- |Instruction execution?

Answer

We will see how to answer these questions in this course through a
combination of measurements and models.

COMP52315—Session 1: Introduction & Overview 9

Real hardware vs. models

Model of hardware as presented by programming languages is von
Neumann model.

Sequential execution of instructions, each instruction completes before
next one starts.

| |
T T

C ¢ ¢ I

: Arithmetic/Logic 2
[Control Unit Unit (ALU) } E')
(0 J
ad N
Input Output

COMP52315—Session 1: Introduction & Overview 10

- CPUs operate at a certain frequency, we will count time in terms of
clock “cycles”. For example, a 1GHz processor runs at one billion cycles
per second.

- Due to the complexity of modern chips, most instructions have a
latency of more than one clock cycle.

" Suppose that the CPU can execute one
Example: addition loop . . : :
instruction per cycle. If every instruction

LOAD r1 = alil has a latency of one cycle, then there are
LOAD r2 = b[i] no “wasted” cycles.

ADD rl = rl1 + r2 If ADD has latency of three cycles, then
STORE al[i] = r1 there are two wasted cycles (between the
INCREMENT 1 ADD and the STORE).

COMP52315—Session 1: Introduction & Overview 1

—

Load Load Add Store Inc
r1 r2 r1,r2 ali], r1 i

Load Load Add | L .| Store Inc
r1 r2 r1,r2 :No-op: :NO'Opi alil, A

f
17 2= 3

COMP52315—Session 1: Introduction & Overview 12

Strategies for faster chips

1. Increase clock speed (more cycles per second)
2. Parallelism (of various kinds)
3. Specialisation (for example optimised hardware for computing

divisions) (& J&' W
on cots Memwr uresh o SOV

ﬂ JIE = _,—!l—-7/ “ﬁ)(-+ :H—H—_L—S

s —

COMP52315—Session 1: Introduction & Overview 13

Increasing clock speed

Liapabed T - TENET AR
TP:?:, '0 SOYtx CPUs

r Throughput l Throughput M L4
W\ﬂj 1 unit/second 4 units/second

Easy for the programmer

Architecture is unchanged, everything just happens faster!

Limited by physical limitations on cooling.

Clock speeds have been approximately constant for 10 years.

COMP52315—Session 1: Introduction & Overview 14

Increasing parallelism

E

Thr_oughput Throughput
1 unit/second 4 units/second

IS

Need enough parallel work
No dependencies between work

Mostly pushes problem onto programmer

COMP52315—Session 1: Introduction & Overview 15

Instruction-level parallelism: pipelining

Pipelining
Rather than performing instruction fetch, decode, execute, and writeback
In one go, separate them into a pipeline.

R
Waiting 3 -
instructions -
!]
Fetch]
Decode . - 4-stage
Execute . pipeline
wiie]

JU

Completed
instructions

COMP52315—Session 1: Introduction & Overview 16

Instruction-level parallelism: superscalar

Superscalar execution

Most modern chips can issue more than one instruction per cycle.

Instructions with no dependencies can be issued simultaneously.

v

Load Add
r1 ri,r2
A
Load
r2

COMP52315—Session 1: Introduction & Overview

v

Store
ali], ri

Inc

Instruction-level parallelism: out-of-order

Out-of-order execution
Execute instructions in an ordering based on availability of input data and
execution units rather than the order in the program.

Keeps more of the execution units busy.

Load | | Load Add No-oo| [No-o Store Inc Load | | Load Add No-oo! [No-o Store Inc
r1 r2 r1,r2 P P afi], r i r1 r2 r1,r2 P P a[i], r1 i

Load | | Load Add Load | | Load Add Store Inc Store Inc
r1 r2 r,r2 | | R W.r2 | afi], r [a[i],r3 [

r3 rg nrg

COMP52315—Session 1: Introduction & Overview 18

Data parallelism: SIMD vectorisation

SIMD

We mostly consider “single-core” performance in this course. But, as you
saw in Core |, vectorisation is critical for single-core performance.

Summing arrays again

double =*a, *b, *c;
for (size t i = 0; 1 < N; i++)
c[i] = a[i] + b[i];
We've seen that instruction throughput can be a bottleneck here.

One way chip designers have “fixed” this is to make individual
instructions operate on more data at once = vectorisation.

COMP52315—Session 1: Introduction & Qverview 19

SIMD execution

Scalar addition, 1 output element per

double xa, =*b, =c; instruction.
for (i = 0; 1 < N; i++) 8
c[i] = al[i] + b[il;
b

Register widths: \

[| 1 operand (scalar)
[[| 2 operands (SSE)

[1 [1] 4operands (AVX) /
T T T T T T 7T 8operands (AVX512)

COMP52315—Session 1: Introduction & Overview 20

SIMD execution

AVX addition, 4 output elements per

Instruction.
double =*a, #*b, =*c; a
for (i = 0; 1 < N; i++) b
c[il = a[i] + b[il; ——

Register widths:
[| 1 operand (scalar)

[[| 2 operands (SSE)

[[T 1] 4operands (AVX)
T T T T T T 7T 8operands (AVX512)

COMP52315—Session 1: Introduction & Overview 20

Example and exercise

A “simple” example: sum reduction

%O
= ,.,;Maz[A « Ml—?*"’@fc"“*));

Single precision sum of all values in a vector,

float c =05 . on an AVX-capable core (vector width 8).
for (i = 0; 1 < N; i++) Howfastcan this code run if all data are in L1

VA IO N
= ‘ cache? T =
o

- Loop-carried dependency on summation variable

- Execution stalls at every add until the previous one completes.
r1e o« < e

%f?,cnb’)

ad A rﬂ, A ~rl
oA

COMP52315—Session 1: Introduction & Overview 21

Applicable peak

ADD has latency of 1 cycle (per Intel),
but we're only using one of the eight
SIMD lanes for each instruction.

Scalar code

float ¢ = 0;
for (i = 0; 1 < N; i++)

c += al[il; s| <€«——
Assembly pseudo-code < o
< ()
LOAD r1.0 « 0 C
Lo o « 8
loop: «— O
LOAD 2.0 + a[il — =
ADD 1.0 « r1.0 + r2.0 «— O
1« 1 + 1 A
if 1 < N: Tloop
result < rl.0 Runs at 1/8 of possible ADD peak.

COMP52315—Session 1: Introduction & Overview 22

Applicable peak

Using all eight SIMD

lanes
SIMD vectorisation s1 ¢
Assembly pseudo-code s2 < %
LOAD [r1.0, ..., r1.7] « [0, ..., 0] s3 D S c
L0 s4 < C_U
loop:
LOAD [r2.0, ..., r2.7] « [al[il, ..., al[i+7]1] s5 < N
ADD ri1 1+ r2 // SIMD ADD
PO 5 —— =
if i < N: loop = — O
result <« r1.0 + r1.1 + ... + ri1.7
s8 <

Runs at ADD peak.

COMP52315—Session 1: Introduction & Overview 23

Exercise: benchmarking sum reduction

- Split into small groups, each group should have at least one person
with a Hamilton account.

- Goal is to benchmark sum reduction to see if we observe this
“theoretical” effect.

- = over to you. Please ask questions!

Exercises, and notes, live at

https://teaching.wence.uk/comp52315/

COMP52315—Session 1: Introduction & Overview 24

Conclusions

- Modern computer hardware is quite complex
- For simple things we can work out what the performance limits will be
- Typically must benchmark to confirm hypotheses

- Next, we'll look at the memory hierarchy and start constructing models
of performance.

COMP52315—Session 1: Introduction & Overview 25

