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Sum reduction benchmark

In exercise 1, you hopefully produced a plot similar to this one.

Notice how the SIMD code has four distinct performance plateaus, whereas
the scalar code only really has two.
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Performance peak

Ay

- Broadwell chips can issue up to one ADD (scalar or vector) per cycle.

- Peak clock speed is 2.9GHz for this hardware.

Why does the vectorised code not achieve theoretical peak for all vector
Sizes?
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Performance peak

- Broadwell chips can issue up to one ADD (scalar or vector) per cycle.

- Peak clock speed is 2.9GHz for this hardware.

Why does the vectorised code not achieve theoretical peak for all vector
Sizes?

Lack of hardware resource

Recall that as well as worrying about instruction throughput, we have to
think about data transfers.

= need to consider the memory hierarchy.
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Memory hierarchy

Can either build small and fast
memory

or 6B  —
256k8 ~
large and slow memorygo 50“5 —

Not possible to have large and
fast: physics gets in the way.

Lie AIA cndt.

= Purpose of many optimisations is to refactor algorithms to

fast memory.
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See https://colin-scott.github.io/personal_website/research/

interactive_latency.html for more detail on latencies
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- Add hierarchy of small, fast memory.
- Keeps a copy of frequently used data, speeding up access

- Typically not possible to a priori know which data will be needed
frequently.

= Caches rely on princple of locality

—
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Principle of locality

- Normally impossible to decide before execution exactly which data will
be needed “frequently”.

- In practice, most programs (could) exhibit locality of data access.

- Optimised algorithms will attempt to exploit this locality.

Temporal locality

If | access data at some memory address, it is likely that | will do so again
“soon”,

Spatial locality

If | access data at some memory address, it is likely that | will access
neighbouring addresses.
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Temporal locality

- The first time we access an address, it is loaded from main memory
and stored in the cache.

- We pay a (small) penalty for the first load (storing is not free).

- But subsequent accesses to that address use the copy in the cache,
and are much faster.

float s[16] = © N>s 6.

for (i = 0; i < N; i++) S S, .... S, %2 5, .. §
s[i%16] += alil; ,“ B e

-

g
Access to 16 entries of s exhibits temporal locality. Makes sense to keep
all of s in cache.
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Spatial locality

- When accessing an address a, we load and store it in the cache.

- We also load and store neighbouring addresses, eg.a+1,a+2,a+ 3
at the same time.

- We pay a penalty for the first load (because we're loading more data).
- Hope that next load is for a + 1, then access will be fast.

Sum reduction

float s[16] = 0O IC{S,DQ
. . . ‘\/h\_/”‘%
for (i = 0; 1 < N; i++)

s[i%l16] += alil; M‘N‘Q ol vo hes k

Access to a exhibits spatial locality. Makes sense when loading a[i] to
also load a[i+1] (it will be used in the next iteration).

b be (pALAX
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Designing a cache

Important questions

1. When we load data into the cache, where do we put it?
2. If we have an address, how do determine if it is in the cache?
3. What do we do when the cache becomes full?

- (1) & (2) are intimately related.
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Putting data in a cache

ero' | ‘ 2 p) ¢ | - - [ 252 | 2" ( o2,
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- Each datum uniquely referenced by its address, K bits. Usually K = 32
or K = 64,

————————

- Need to turn this large address into a cache location.

Direct mapped caches
7\!6
- Cache can store 2" bytes. " le [ "
- Divided into blocks each of 2™ bytes. 26
- Each address references one byte. — & bk aul“%}

- Use N bits of the address, to select which slot in the cache to use.

fp——
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Direct mapped caches: indexing

Cache tag Byte select
K — N bits N — M bits | M bits
Cache index
Block 0 Byte O Byte 1 Byte 2M
Block 1
Block 2N—=M

- Byte select: Use lowest M bits to select correct byte in block.
- Cache index: Use next N — M bits to select correct block.

- Cache tag: Use remaining K — N bits as a key.
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Choice of block size

- Data is loaded one block at a time (also called cache lines).
- Immediately exploits spatial locality.
- Larger blocks are not always better.

- Almost all modern CPUs use 64byte block size.

Corollary
Cache-friendly algorithms work on cache line sized chunks of data.
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Direct mapped caches: eviction

- What happens if two addresses have the same low bit pattern?

- We have a conflict.
- Resolution: newest loaded address wins.

- Thisis a least'r‘ecently used (LRU) eviction policy.

What can go wrong?

,eg.,hf
A - 1KB cache
int al64], bl64], (D)= o;
for (int i = 0; i < 100; i++) - 32 byte block size
for (int j = 0; j < 64; j++)
r += alj] + b[jl; - SON=10,M =5.

32 blocks in the cache.

bWexl + 6bxg = SIZBykS < |02 )
A b b, bk < 1.225‘/"’
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Conflicts reduce effective cache size

for (int j = 0; j < 64; j++) ‘
r o= al3] + b[51;
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Conflicts reduce effective cache size

Bl L kb

for (int j = 0; Jj < 64; j++)
r+= aljl + b[3];

5a[00] = b..._00000_00000 => line 0, byte offset 0
do:7 ds:15 A16:23 A24:31 §a[01] = b..._00000_00100 => line 0, byte offset &
§a[02] = b..._00000_01000 => line 0, byte offset 8
§a[03] = b..._00000_01100 => line 0, byte offset 12
§al[04] = b..._00000_10000 => line 0, byte offset 16
§a[05] = b..._00000_10100 => line 0, byte offset 20
§al[06] = b..._00000_11000 => line 0, byte offset 24
§al[07] = b..._00000_11100 => line 0, byte offset 28
&b[00] = b..._11100_00000 => line 28, byte offset 0
&b[01] = b..._11100_00100 => line 28, byte offset 4
§b[02] = b..._11100_01000 => line 28, byte offset 8
&b[03] = b..._11100_01100 => line 28, byte offset 12
6b[04] = b..._11100_10000 => line 28, byte offset 16
&§b[05] = b..._11100_10100 => line 28, byte offset 20
&§b[06] = b..._11100_11000 => line 28, byte offset 24
(: t)O:7 t)8:15 t)16:23 t)24:é£:) §b[07] = b..._ 11100_11100 => line 28, byte offset 28
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Conflicts reduce effective cache size

for (int j = 0; Jj < 64; j++)
r+= aljl + b[3];

b 5a[00] = b..._00000_00000 => line 0, byte offset 0
32:39 ds.15 A16:23 | U24:31 §al01] = b..._00000_00160 => line 0, byte offset &
§a[02] = b..._00000_01000 => line 0, byte offset 8

d32:39 §a[03] = b..._00000_01100 => line 0, byte offset 12
§al[04] = b..._00000_10000 => line 0, byte offset 16

§a[05] = b..._00000_10100 => line 0, byte offset 20

§al[06] = b..._00000_11000 => line 0, byte offset 24

§al[07] = b..._00000_11100 => line 0, byte offset 28

&b[00] = b..._11100_00000 => line 28, byte offset 0

&b[01] = b..._11100_00100 => line 28, byte offset 4

§b[02] = b..._11100_01000 => line 28, byte offset 8

&b[03] = b..._11100_01100 => line 28, byte offset 12

6b[04] = b..._11100_10000 => line 28, byte offset 16

&§b[05] = b..._11100_10100 => line 28, byte offset 20

t) t) t) t) &§b[06] = b..._11100_11000 => line 28, byte offset 24

0:7 8:15 16:23 24:31 §b[07] = b..._11100_11100 => line 28, byte offset 28
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Conflicts reduce effective cache size

for (int j = 0; Jj < 64; j++)
r+= aljl + b[3];

b b 5a[00] = b..._00000_00000 => line 0, byte offset 0
32:39 40:47 | 16:23 | Q24:31 §al01] = b..._00000_00160 => line 0, byte offset &
§a[02] = b..._00000_01000 => line 0, byte offset 8

d32:39 A40:47 §a[03] = b..._00000_01100 => line 0, byte offset 12
§al[04] = b..._00000_10000 => line 0, byte offset 16

§a[05] = b..._00000_10100 => line 0, byte offset 20

§al[06] = b..._00000_11000 => line 0, byte offset 24

§al[07] = b..._00000_11100 => line 0, byte offset 28

&b[00] = b..._11100_00000 => line 28, byte offset 0

&b[01] = b..._11100_00100 => line 28, byte offset 4

§b[02] = b..._11100_01000 => line 28, byte offset 8

&b[03] = b..._11100_01100 => line 28, byte offset 12

6b[04] = b..._11100_10000 => line 28, byte offset 16

&§b[05] = b..._11100_10100 => line 28, byte offset 20

t) t) t) t) &§b[06] = b..._11100_11000 => line 28, byte offset 24

0:7 8:15 16:23 24:31 §b[07] = b..._11100_11100 => line 28, byte offset 28
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Conflicts reduce effective cache size

for (int j = 0; Jj < 64; j++)
r+= aljl + b[3];

b b b 5a[00] = b..._00000_00000 => line 0, byte offset 0
32:39 40:47 48:55 A24:31 §al[01] = b..._00000_00100 => line 0, byte offset 4
§a[02] = b..._00000_01000 => line 0, byte offset 8

d32:39 A40:47 d48:55 §a[03] = b..._00000_01100 => line 0, byte offset 12
§al[04] = b..._00000_10000 => line 0, byte offset 16

§a[05] = b..._00000_10100 => line 0, byte offset 20

§al[06] = b..._00000_11000 => line 0, byte offset 24

§al[07] = b..._00000_11100 => line 0, byte offset 28

&b[00] = b..._11100_00000 => line 28, byte offset 0

&b[01] = b..._11100_00100 => line 28, byte offset 4

§b[02] = b..._11100_01000 => line 28, byte offset 8

&b[03] = b..._11100_01100 => line 28, byte offset 12

6b[04] = b..._11100_10000 => line 28, byte offset 16

&§b[05] = b..._11100_10100 => line 28, byte offset 20

t) t) t) t) &§b[06] = b..._11100_11000 => line 28, byte offset 24

0:7 8:15 16:23 24:31 §b[07] = b..._11100_11100 => line 28, byte offset 28
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Conflicts reduce effective cache size

for (int j = 0; j < 64; j++) '\ W‘/ ~‘v{ é(‘ d_l""\g .

r = aljl « b[jl;

acdeu"bw da‘xo:? S

4 5a[00] = b..._00000_00000 => line 0, byte offset 0
b32;39 b4o;47 b48;55 b56:63 MA Ga[01] = b..._00000_00100 => line 0, byte offset 4
§a[02] = b..._00000_01000 => line 0, byte offset 8

d37:39 Aso-47 dss:55 ds6:63 | u& §a[03] = b..._00000_01100 => line 0, byte offset 12
§al[04] = b..._00000_10000 => line 0, byte offset 16

ﬁ—‘k ® &a[05] = b..._00000_10100 => line 0, byte offset 20

§al[06] = b..._00000_11000 => line 0, byte offset 24

§al[07] = b..._00000_11100 => line 0, byte offset 28

&b[00] = b..._11100_00000 => line 28, byte offset 0

&b[01] = b..._11100_00100 => line 28, byte offset 4

§b[02] = b..._11100_01000 => line 28, byte offset 8

&b[03] = b..._11100_01100 => line 28, byte offset 12

6b[04] = b..._11100_10000 => line 28, byte offset 16

&§b[05] = b..._11100_10100 => line 28, byte offset 20

&§b[06] = b..._11100_11000 => line 28, byte offset 24

b0:7 b8:15 b16:23 b24:31 §b[07] = b..._ 11100_11100 => line 28, byte offset 28
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Cache thrashing

What can go wrong?

- 1KB cache
int A[64], B[64], r = 0O;
for (int i = 0; i < 100; i++) - 32 byte block size
for (int j = 0; j < 64; j++)
r += A[j] + B[jl; * SON=10,M =5.

32 blocks in the cache.

Cache thrashing

- We need 2 - 64 - 4 = 512 bytes to store A and B in cache. This only
requires 16 blocks, so our cache is large enough.

- But if the addresses match in the low bits, we will try and store to
same locations.

- In worst case, every load of B[ j] evicts A[ j 1, and vice versa.
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Cache associativity

Direct mapped Fully associative
- Each block from main memory - Each byte from main memory
maps to exactly one cache line. can maps to any cache line.
- LRU eviction policy (new data - Most flexible, but also
overwrite old). expensive.

k-way set associative

- R “copies” of a direct mapped cache. Each block from main memory
maps to one of k cache lines, called sets.

- Typically use LRU eviction.
- Usual choice: N € {2,4,8,16}.
- Skylake has N = 8 for L1, N =16 for L2, N = 11 for L3.
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Exercise: cache bandwidth

- Let's try and do this in the round again.

- Goal is to benchmark the memory bandwidth as a function of vector
size to see what we observe.

- We will use the results to explain the observations of the sum
reduction benchmark.

= over to you.

Exercises linked from DUO or at

https:
//teaching.wence.uk/comp52315/exercises/exercise02/
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You hopefully produced a plot similar to this one.

| added the floating point throughtput of the sum reduction so we can
compare the plateaus.
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You hopefully produced a plot similar to this one.

| added the floating point throughtput of the sum reduction so we can
compare the plateaus.
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Interpretation

- Vectorised addition requires 1 32Byte load/cycle (for the 8 floats)
- Accumulation parameter held in a register.
= requires sustained load bandwidth of 32 x 2.9 = 92.8GByte/s

- From L1 (less than 32kB) we see sustained bandwidth of around
300GByte/s = floating-point throughput is limit.

- L2 (less than 256kB) provides around 80GByte/s or around
27Bytes/cycle = 6.75 floats/cycle = peak is around 19GFlops/s.

- L3 (less than 30MB) provides around 36GByte/s or around
12Bytes/cycle = 2.75 floats/cycle = peak is around 8GFlops/s.

- Main memory provides around 13GByte/s or around 4.5Bytes/cycle =
11floats/cycle = peak is around 3.25GFlops/s.
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Adding bandwidth-induced limits

Not bad for a pen-and-paper exercise.
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Memory/node topology

likwid-topology reports an ASCIl version of diagrams like this.

Core 0| |Core 1| |Core 2| |[Core 3
L1D L1D L1D L1D
L2 L2 L2 L2

Private
cache

Shared L3 Cache
|

Memory interface

[ Memory ]
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More than one core

- So far, just looked at performance when we use a single core.

- In practice, most scientific computing algorithms will be parallel
= How does this affect the performance?

Scalable vs. Saturating
CPU cores are a scalable resource.

Adding a second core doubles the number of floating point operations we
can perform.

Memory bandwidth is a saturating resource. Outside of L2 cache (L3, main
memory), CPU cores compete for the same resource.
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Scalable vs. Saturating

Shared resources might show Parallel resources show scalable
saturating performance performance
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Exercise: memory bandwidth saturation

- Goal is to benchmark the memory bandwidth for different vector sizes
as a function of number of cores

- Will then look at scaling of sum reduction with cores

= over to you.

Exercises at

https:
//teaching.wence.uk/comp52315/exercises/exercise03/
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Conclusions on hardware architecture

Performance considerations

- How many instructions are required to implement an algorithm
- How efficiently those instructions are executed on a processor

- The runtime contribution of the data transfers

Complex “topology” of hardware

- Many layers of parallelism in modern hardware
- Sockets: around 1-4 CPUs on a typical motherboard
- Cores: around 4-32 cores in a typical CPU

- SIMD/Vectorisation: typically 2-16 single precision elements in vector
registers on CPUs

- Superscalar execution: typically 2-8 instructions per cycle
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Challenges for program development

- We will focus most of our efforts on SIMD and some superscalar
execution here.

- An ongoing challenge is that most programming models do not offer a
lot of explicit access to parallelism.

= will look at mechanisms to convince compilers to “do the right thing".

COMP52315—Session 2: Memory hierarchy 26



