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Parallel memory bandwidth

In exercise 3, you hopefully produced plots similar to these.
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A more realistic measure of memory throughput

The cache line c3‘5§ benhmark v@ve seen pr@ides upp bounds,
but doesn’t simulate realistic workloads. lfbﬂt;( ~encth ~lFcl
- It only touches one byte in each cache line, but remember, optimised
code works on all the bytes in a cache line.
= STREAM benchmark https://www.cs.virginia.edu/stream/
+ Most commonly used is TRIAD. PGZTM
- Implemented in Tikwid-bench as stream_triad_ XXX with a few
different options. 59 Ae &p-avx

TRIAD loop

double *a, *b, *c;

double alpha = 1; M

for (int i

= 0; 1 < N; 1i++)
ali] = [ ]*

«alpha + clil; | je Wk cAdhe eeds
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Code optimisation
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Simple model for loop heavy code

Simple view of hardware

Simple view of software

_ Execution units /* Possibly nested loops */
with maximum performance . ] ]
Pyear [FLOPS/s] for (i = 0; 1 < ...; 1i++)
N /* Complicated code doing */
/* N FLOPs causing
Data path with /* B bytes of data transfer =*/

bandwidth b, [Byte/s] Computational intensity [FLOPs/byte]

S N

IC —_— —
Data source/sink B
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What is the performance P of a code?

How fast can work be done? P measured in FLOPs/s

Bottleneck

Either

- execution of work Ppeai [FLOPS/s];
- or the data path I.bs [FLOPs/byte x byte/s].

P — m|n (Ppeak7 chs)

This is the simplest form of the roofline model. It is optimistic, everything
happens at “light speed”.

Introduced in Williams et al. Roofline: An Insightful Visual Performance
Model for Multicore Architectures, CACM (2009).
https://doi.org/10.1145/1498765.1498785
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Applying roofline

Performance model

Roofline characterises performance using three numbers:

1. Ppeak the peak floating point performance;
2. bs the streaming memory bandwidth;

3. I. the computational (or arithmetic) intensity of the code.

The first two are characteristics of the hardware. The last is a
characteristic of the code.

Measure these numbers and plot, gives idea of what performance
optimisations are likely to pay off.
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Example

—@®— Code A —4—— Code C
—p»—— Code B

; Hamilton node single-core roofline
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Guides optimisation choices

—@®— Code A —4— Code C
—p—— Code B
Hamilton node single-core roofline

N\A

Best case vectorised: 46 Gflop/s
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Double precision GFLOPs/s
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Arithmetic intensity [FLOPs/byte]
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Which codes might benefit from
vectorisation?

How much improvement could we
expect?

Which codes might benefit from
refactoring to increase arithmetic
Intensity?
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Determining machine characteristics

Memory bandwidth

Roofline models data movement with streaming memory bandwidth.

Two ways of computing it.

1. Know what speed of memory you have, and look up number of
memory channels on spec sheet. For example, 4-channel 2.4GHz RAM
delivers at best 4 x 2.4GHz x 8Byte = 76.8GByte/s.
= Needs knowledge, of installed memory, typically DoOt achieved In

practice. /(
2. Measure using STREAM./

= we will typically do this (see exercise 4).
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Determining machine characteristics

Floating point throughput

Absolute peak can be determined from spec sheet frequency and some
knowledge of hardware.

Intel Haswell Execution Engine

- Floating point instructions execute
on port 0 and port 1

56-entry Instruction Decode Queue

- Up to 4 “micro-ops” issued per cycle
T — up to 2 floating point instructions

per cycle
+ FMA (y < a + b x ¢); MUL execute on

both ports.

- ADD only executes on port 1. Divide
only executes on port 0.
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Determining machine characteristics

Example: best case

Code only contains double precision SIMD FMAs, clock speed is 2.9GHz.
Peak floating point throughput is - {; < fﬂ”fls
f SH per A Ao .

clock speed vector width
~ N ~ =
29 x 2 X A X 2 = 46.4GFLOPs/s
v \/ ——
dual issue FMA

Example: only ADDs

Code only does double precision SIMD ADDs, clock speed is 2.9GHz.

clock speed vector width B +§
~ =~

29 X T X 4 = 11.6GFLOPs/s
—~—

single issue
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Determining machine characteristics

Dee mbnx e X:L,B

- Often useful to put multiple\roofs” on the roofline, corresponding to
different instruction mixes.

- Calculations are complicated b\frequency scaling as well.
= can add measured limit by running LINPACK&see exercises)

More details

https://uops.info has all the information you could ever want on
micro-op execution throughput.

https://travisdowns.github.io/blog/2019/06/11/
speed-1imits.html discusses in much more detail how to find limiting
factors in (simple) code.
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Computing arithmetic intensity

Two options:

1. Measure using performance counters (see later);

2. Read code, count floating point operations and data accesses.

Both options have their pros and cons.
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Counting operations

double =*a, *b, =*c, =*d;
2. ML

for (i = 0; i < N; i++) {

a[i] - blilec[i] + d[i]+a[i]; + #PD

} 1 2 2

3 DP FLOPs/iteration. 3N total DP FLOPs. (Notice how we don't care about

what type of FLOPs these are).
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Counting data accesses

Fach read counts as one access. Each write counts as two (one load, one
store). Only care about array data (ignore loop variables)

(Srike (f\;‘ﬂ/ (cnAs Ao
oo tlen ﬂ’vrcS/ «34

double *a, =*b, =*c, =*d;

for (i = 0; 1 < N; i++) { 4 (rd
ali] = b[i]*c[i] + d[1]*3%] FA

145 41 L chve.

3 DP reads, 1 DP write per iteration. 8 x 5N total bytes.

— ~ -

Yy OL= 3
40
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double =*a, *b, =*c,

for (i = 0; i < N; i++)
for (3 = 0; j < M; j++)
a[j] = b[ilxc[i] + d[il*al[j];

For actual data moved, need a model of cache.

Bounds on movement
Perfect cache Pessimal cache

Provides lower bound. Provides upper bound

Each array entry moved from Each array access misses cache.

mdin memory once. gBN' 1 Counts total non-unigue

Counts unique memor memory accesses.

accesses.  JN X ﬂﬁ) 8 x 2MN + 8 x 3MN total bytes
W ytes.
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Complication

Bounds on movement
Perfect cache Pessimal cache

Provides lower bound. Provides upper bound

Each array entry moved from Each array access misses cache.
main memory once. Counts total non-unique
Counts unique memory memory accesses.

dCCesses. 8 x 2MN + 8 x 3MN total bytes.

8 x 2M + 8 x 3N total bytes.

These bounds are typically not tight. If you want better bounds normally
have to work harder in the analysis.

Best employed in combination with measurement of arithmetic intensity.
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Exercise: roofline plot for dense matrix-vector multiplication

- Goal is to produce a roofline plot for dense matrix-vector
multiplication, which computes

V= AX = ZA,,~>?,~
j

https:
//teaching.wence.uk/comp52315/exercises/exercise04/
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