Session 4: Performance measurements

COMP52315: performance engineering

Lawrence Mitchell”

"lawrence.mitchell@durham.ac.uk

COMP52315—Session 4: Performance measurements

Roofline dense matrix-vector product

® 0o > 03 bloc‘g% \,\gﬂ»—

> 03 W -
s Hamilton node single-core roofllne”"

2 17
(2] - /‘
) 1 1 scalar,op/cycle 3 Gflop/s
% — LA
- (
5 00
g ([/ N
O
@
| .
o
Q
O
>
O
02" 1

. x 2 T 'o

2 2 2

COMP5231%-Session 4: Performané measurements]
Arithmetic intensity [FLOPs/byte]

How and what to measure

- Roofline gives us a high-level overview of what to try next.

- How to drill down and get more information about what is causing the
bottleneck?

- How to confirm the hypothesis formed through the roofline analysis?

= Measure things about the code.

COMP52315—Session 4: Performance measurements 3

Performance measurements

Meesuwe ¥ lDl’:'k""fs

- Modern hardware comes with some special purpose regiffé‘gt'hafyéu -
can prod to measure low level performance events.

- Can use this to characterise performance of a piece of code

Caveats

- Measurements can only tell you about the algorithm you're using

- e.g. Counts the data you moved, not the data you could have moved.
- Do not tell you about potential better algorithms

- Need to work hand in hand with models.

- \/LW
PR

COMP52315—Session 4: Performance measurements

What kind of things can we measure?

- An almost overwhelming number of different things like:

- Number of floating point instructions of different type (scalar, sse, avx)
- Cache miss/hit counts at various levels
- Branch prediction success rate

= Best used to confirm hypothesis from some model

COMP52315—Session 4: Performance measurements

Abstract metrics

- Can read low-level hardware counters directly (e.g. how many floating
point instructions were executed?)

- More useful to group into abstract metrices
= easler to compare across hardware, easier to interpret.

- For example, measure “Instructions per cycle” rather than instructions.

ITC .

‘*t/“'“'{"

COMP52315—Session 4: Performance measurements

How do we measure them?

W/é ‘ ‘OL(C.LVM M’k

PR s \
dot et 63w mave coke

- Use likwid-perfctr (installed on Hamilton via the Tikwid
module).

- Offers a reasonably friendly command-line interface.

- Provides access both to counters directly, and many useful predefined
“groups’.

[> (oo~ i M {'\ Me
6?"-)7"‘;‘1 [~)

COMP52315—Session 4: Performance measurements 7

Example: STREAM

i) = al:y =) - <)

- Will use Tikwid-perfctr to measure memory references in different
Implementations of the same loop.

Scalar SSE AVX AVX2

for i from 0 to n: for i from 0 to n by@ for i from 0 to n by@? for i from 0 to n b 3
load a[i:il] regl vload a[i:i2] vregl vload a[i:iA] vreg vload a[i:i4] vregl
load b[i:il] reg?2 vload b[i:iz] vreg2 vload b[i:iA] vreg?2 vload b[i:iA] vreg2
load c[i:il] regh vload c[i:iz] vregh vload C[i!ilf] vregh vload c[i:iA] vreg3
mul regl reg2 reg3 vmul vregl vreg2 vreg3 vmul vregl vreg2 vreg3 vfma vregl vreg2 vreg3
add reg4 reg3 regh vadd regh reg3 regh vadd reg4 reg3 regh vstore reg3 c[i:iA]
store regs4 c[i:il] vstore regh c[i:iZ] vstore regh c[i:i4]

- * - * N . N A
N itenlnis M/L ifend~s 4@ k /i, o5

%M/ A CM (/f"gn,jr-.

COMP52315—Session 4: Performance measurements 8

Measurement

For each loop choice, if we choose n = 10°, how many load and store
Instructions do we expect to measure?

Ceader: 3g(D8 [onds
w chores.

é
. 3 6 | x(O0" stares.
AU LPMD [sads =

COMP52315—Session 4: Performance measurements 9

{

/WD _ (ke _Sar(s)

pT (D,

[t laD_MAR L QW(e~ >/ |

B Wm-gwr[“b“)
L Y05

L e SR b"Yy.
S
I Yyl 1
éL B,

lonk
-
Py L I — 77
——
et 2€

Measurement

For each loop choice, if we choose n = 10°, how many load and store
Instructions do we expect to measure?

Answer

Each loop iteration has 3 loads and 1 store.
Vector width v and n iterations we need 22 loads and Z stores.

= let's attempt to verify this with measurements.

COMP52315—Session 4: Performance measurements

Exercise

- Goal is to convince ourselves that measurement works!

= Exercise 5 from the usual place.

Exercises at

https://teaching.wence.uk

COMP52315—Session 4: Performance measurements 10

What if you don't know which part of the code takes all the time?

Answer

Use profiling to determine hotspots (regions of code where all the time is
spent).

= allows us to focus in on important parts.

COMP52315—Session 4: Performance measurements 1

Profiling: types

- Goal Is to gather information about what a code is doing

- Sampling “Uu [W&
i S i Gl

- or code instrumentation

T —eeds & /(.
Instru mentation

- Works with unmodified ' Requwe; source code
annotations to capture
executables

“interesting” information
-_M-u-eh:}nore details and

- Only a statistical model of

code execution
_ . focused o \DW
= not very detailed for volatile
: = Preprocessing of source
metrics

. required
= needs long-running

application

small functions.
5((u,t.k &V()f‘“"”‘" H 4» A~ —eed
COMP52315 Se55|on4 Performance measurements M (-—-L—-ﬂ-‘h

= (Can have large overheads for

o~
\

Sampling

- Running program is periodically interrupted to take a measurement.

- Records which function we are in.

Measurements

200 200 20 20 20 2R 2 20 2R 2R 2R

Time

- (
COMP52315—Session 4: Performance measureme 13

- Measurement code is inserted to capture all the events we care about

wen(le MF1 —hoety.

Measurements

A\ 2 4 vw Y VY Y VY

Time

MM wnw: void bar(...) 1 &T; . wO“S
R e - n 4
{L»M W(f\‘ﬂ — — e hat

N — Enter ("foo")
Co~ tkeo h—o || G
Exit ("foo") ; ~D
‘F V4 % DWS

NM /‘Lnt mainl(void) (. N
Ur M & Tiees ol Y beaps '-7‘(‘-‘“‘“‘()'
bar(...); -
WIS L A3, .

jw *—\W‘* th-s

COMP52315—Session 4: Performance measurements 14

¢
P

Sampling profiles with gprof

“Pylom: Fyy ; pQAMUmld < Syl

oM~ ey ! Priple L'/LNJ & bulha

1. Compile and link code with &ymbols (add —%) and profile information
(-p).
2. Run code = produces file gmon.out "Mﬂ ljw"ﬂ'f

3. Post dat Ith f
. Postprocess data with gpro %w (fk‘*‘-
4. Look at results

nNA—LS d"ﬁ’

hsls o «ww.
i wc:’ M) b ke defui s

COMP52315—Session 4: Performance measurements 15

C'?vﬁ' Q?W"(l“"lj (P”M ok

gprof “flat profile”

Flat profile: lg/s‘fu—.

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name
76.14 5.71 5.71 102 0.06 0.06 ForcelLJ::compute(Atom&, Neigh
17.07 6.99 1.28 6 0.21 0.22 Neighbor::build(Atom&)
2.80 7.20 0.21 3 0.07 0.07 void ForcelJ::compute_halfnei;
1.47 7.31 0.11 1 0.11 7.05 1Integrate::run(Atom&, Forcex,
0.93 7.38 0.07 __1ntel_avx_rep_memcpy
0.40 7.41 0.03 11 0.00 0.00 Neighbor::binatoms(Atom&, int
0.40 7 44 0.03 6 0.01 0.01 Comm::borders(Atom&)
0.40 7.47 0.03 1 0.03 0.@4 create_atoms(Atom&, int, int,
0.13 7.48 0.01 285585 0. 0.00 Atom::unpack_border(int, doub’

Koo (M-hres &WL r«ﬂm

COMP52315—Session 4: Performance measurements 16

gprof “flat profile”

- Code is instrumented (instructions inserted so we know which function
we're in), triggering of measurement is sampling based (not every call).

- GProf provides profile with some tracing information

- Gives both inclusive and exclusive timings.

- Blue box shows “inclusive”

i) int main(void) {
time for main for (i = 0; i < N; i++) |
if (i %3 ==
- foo and bar calls (orange) B e
excluded for “exclusive” time. } else |
foo () ;

= exclusive time measures
execution in function that is
not attributable to some
other function.

COMP52315—Session 4: Performance measurements 17

Continued workflow

- After we have identified the hotspot that takes all the time, we'd like to
determine If it is optimised

= need more detailed insights.

1. Find relevant bit of code l d,

2. Determine algorithm &=
3. Add instrumentation markers (see exercise) <

4. Profile with more detail/use performance models.

= guidance for appropriate optimisation.

COMP52315—Session 4: Performance measurements 18

Exercise: finding the hotspot

- So far, we've looked at very simple code. Now, your task will be to find
the hotspot and do some exploration in a larger one.

= Exercise 6 from the usual place.

Exercises in the usual place at

https://teaching.wence.uk

COMP52315—Session 4: Performance measurements 19

