Session 5: Cache blocking/tiling
COMP52315: performance engineering

Lawrence Mitchell’ W o=

> e 8
"lawrence.mitchell@durham.ac.uk }‘ ‘_S ‘

? - feib ole & hesh.
wéwéﬁk l'(otsv\ "
2 L quenkfie cole § 'ijif\-

COMP52315—Session 5: Cache blocking/tiling

An exemplar problem

Matrix transpose
B,’j — Aj,‘ A B e R"*"

Uolel forpel-e
=S MR e 2L

double *a, *b;

for (int i = 0; 1 < N; i++) Shalk [
for (int j = 0; j < N; j++) .
b[i*N + j] = a[j*N + il; = h* c.*

So far, we've talked about how to measure performance, and perhaps

"I T

v

determine that it is bad.

= what can we do about Iit?

COMP52315—Session 5: Cache blocking/tiling '—

Matrix transpose: simple performance model

Set up our expectation

- N? loads, N? stores, no compute
= all we're doing Is copying data

- Hence we might expect to see performance close to that of the
streaming memory bandwidth, independent of matrix size.

COMP52315—Session 5: Cache blocking/tiling

Matrix transpose: simple performance model

Set up our expectation

- N? loads, N? stores, no compute

all we're doing is copying data

- Hence we might expect to see performance close to that of the
streaming memory bandwidth, independent of matrix size.

Matrix size BW [GByte/s]

§SILx 1 ¢ 128x128 22 WK
se | 256 x 256 o\ ('13 pevic
13

kWﬂ) -7 512 x 512 N u-eam
1024 x 1024 5
(gl
Low & 2048 x 2048 16 M A (~ e
4096 x 4096 09 ¢

COMP52315—Session 5: Cache blocking/tiling 3

What went wrong?

double =*a, #*b;

for (int i = 0; 1 < N; i++)
for (int j = 0; j < N; j++)
b[i*N + j] = a[j*N + i];
\,—\{

oo

- We have streaming access 1o b, but stride-N access to a.

- If both matrices fit in cache, this is OK, and a reasonable model of time
IS Tcache — Nz(tread + tvvrite)-

- Note that the reads of a load a full cache line, but use only 8 bytes of it.
- Better model Tmem = N?(8tead + twrite)

COMP52315—Session 5: Cache blocking/tiling

\ 4
\ 4

COMP52315—Session 5: Cache blocking/tiling 5

Cache locality

- Since we have strided access to a, we need to hold LN bytes in the
cache to get any reuse, where L is the cache line size in. This is not
possible for large matrices. d.oTWS

- A mechanism to fix this is to reorder the loop iterations to preserve
spatial locality.
Idea

- Break loop iteration space into blocks
- Strip-mining
- loop reordering

COMP52315—Session 5: Cache blocking/tiling 6

- Break a loop into blocks of consecutive elements

for (int i = 0; 1 < N; i++)
ali] = f(i);

for (int i1 = 0; i1 < N; 1i += stride)
for (int 1 = 1i; 1 < min(N, ii + stride); i++)
alil = f(1);

- Not that useful for just a single loop, although there are circumstances

where one might use it '
; . ﬁ.m*tl ¢
C}N~(¢(Cf"‘3#y

L

COMP52315—Session 5: Cache blocking/tiling 3 7

Strip mining multiple loops

- Let's do the same for both loops of the transpose:

for (int i = 0; i < N; i++)l
for (int j = 0; j < N; j++)| .
ali*N + j] = a[j*N + i]; ”\"P [V oy

for (int ii = 0; ii < N; 11 += stridei)
for (int 1 = ii; i < min(N, ii+stridei); i++J
for (int jj = 0; jj < N; jj += stridej)
for (int j = jj; j < min(N, jj+stridej); j++t
b[i*N + j] = a[j*N + i];

- Haven't yet made any change to the performance s (N('Cf
ol ey st e

COMP52315—Session 5: Cache blocking/tiling > S‘_c—* vduﬂ-\

Reorder loops

After permuting 1 and jj loops

for (int ii = 0; ii < N; ii += stridei) 4]
for (int jj = 0; jj < N; jj += stridej) bloales
for (int 1 = ii; 1 < min(N, ii+stridei); 1++)
for (int j = jj; j < min(N, jj+stridej); j++)

b[i*N + j] = a[j*N + 1]; e -
i j alj i ~ =
Mook .

- Two free parameters strideil and stridej

- Need to choose these appropriately to levels in the cache hierarchy

. 1deally block for 11, 12, L3, etc... de— aASEF pegle bleak jjut
- The extra logic adds some overhead d"‘\r L .

COMP52315—Session 5: Cache blocking/tiling

(kMg dennbl 8.

lteration over B.

COMP52315—Session 5: Cache blocking/tiling 10

Why is it “tiling”?

0 .

0 4! 0) 3 D
6 /1 18 /19 0 /21 3

2 20 [27 |28 | 2P 4
JESJEAETETE 9
? 1 i 3 y /
I

5 5 58 59 60 6 63

COMP52315—Session 5: Cache blocking/tiling M

- Have a go, | provide some sample code for which you can tune the
blocking parameters.

= Exercise 7.

https:
//teaching.wence.uk/comp52315/exercises/exercise07/

COMP52315—Session 5: Cache blocking/tiling 12

A second problem

Shlk Gchho ege sl e~
oA = Nt T S.

Matrix-Matrix multiplication

Cij — C,'j R ZA,’/?B/QJ' A B, C e R*N

o (50 F = B9 2 & @8) ;MA’ ?C"L %’WJL'L'L
e G 5 = €8 5 @ m3 Soo) CPA =

for (int k = 0; k < n; k++)

Cli*n + 31 += Ali#n + k] * B[k*n + j1; WS ‘FIWA'S

Same story here (or at least it was in the 90s!). (/“’

COMP52315—Session 5: Cache blocking/tiling 13

(Another) simple model for computation

- Simple model of memory, two levels: “fast” and “slow”
" - “ « cdm
- Initially all data in slow memory cocle

m number of data elements moved between fast and slow memory
tm time per slow memory operation

f number of flops o~ rj‘wlfas clro .

tr < tm time perflopes = fwib” Wl g
g =: f/m average flops per slow memory access

- Minimum time to solution (all data in fast memory)

tef | JE
- Typical time FLI /’ (al‘gj(b

ftr + mty, = fte (1 + =

telg:
_ ! 1 ‘- -3 O
- tm/tr property of hardware, g property of algorithm ‘l/
— T —— T
COMP52315—Session 5: Cache blocking/tiling “ 'j'h‘ —’- .3 4 14

Nalve matrix-multiply
2 Llps

14
for (int 1 = 0; 1 < n; 1++) (0(?4 FMA> f(f
f (int j = 0; J < n; j++) =
Oiorlr(]ini k = 03 k : n? k++) M \#
] =

Cli*n + j1 = C[i*n + j] + Ali*n + k] * B[k#n + j1;
- v)

- Algorithm does‘ 2n3s: O(n?) flops and touches 3 - 8n? bytes of memory

- g potentially O(n), arbitrarily large for large n. 2Lt b{l-c.s

COMP52315—Session 5: Cache blocking/tiling ‘w w o 15

Nalve matrix-multiply

for (int 1 = 0; i < n; i++)

// Read row i of A into fast memory " rca—‘LS G' Stz Ww
for (int j = 0; j < n; j++) N
// Read C; into fast memory é&c — VIL "‘-‘*JSS Al 2 1
// Read column j of B into fast memory e€— .7— reads A_. S ‘li A
for (int k = 0; k < n; k++) & v Yy

Clisn + j1 = Cli*n + 1 + Alisn + k] = B[ksn + j1; K
// Write Cj back to slow memoryew‘L U‘U\‘I‘Q JQ._ S\’\i« of

COMP52315—Session 5: Cache blocking/tiling 15

Nalve matrix-multiply

Number of slow memory references
m =n> each column of B is read n times
+n® each row of A is readyg once

+2n? each entry of C is read once and written once

= (n° +3n%)
Hence
_ f 2n3
lim g =— = =2
n—o0 m (n3+3n?)
- + X

COMP52315—Session 5: Cache blocking/tiling 15

From model to prediction

- So for a triply-nested loop structure, the best time to solution our
model predicts is:

N lae. T=tf (1+§—’t”f) e

- Recall that on modern hardware, memory latency is around 200 cycles
.) . -
per cache line. So let's approximate ty ~ 200/8 = 25, and say tf = 1.

T = tf(1425/2) = 13.5tf Q%«-&-)
. Maximally 7% peak. Ms e b=

- This is only an estimate.

COMP52315—Session 5: Cache blocking/tiling 16

Measurement

- Single core Intel i5-8259U. @_ 26 Gfly
- 2 4-wide FMAs per cycle = 16 DP FLOPs/cycle.
= Peak is 3.6 - 16 = 57.6 GFLOPs/s, model predicts 4.03GFLOPs/s.
—

‘ I I
—e— Triple loop
- Model
15 H
4 emzlu. M,
o
o 10| 5
O
5 | |
| | | |
0 1,000 2,000 3,000
Matrix size

COMP52315—Session 5: Cache blocking/tiling 17

How to improve reuse?

- Problem is that we move rows and columns into fast memory, and then
evict them
- Need way of keepmiﬁ]}\eﬂlnoaded data in fast memory as long as
possible. AN lf"m
= tile iterations:ﬂ“)(‘R Vﬂ;:—:lt:/x’
// Treat A B,C ¢ @NXN\/

// that is, N x N matrices where each entry is a bx b matrix.

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)) ‘\"‘ﬂ}v L«J\"p

// Read block C; into fast memory 1 s
for (int k = 0; k < n; k++) f; ?_ “ - P
// Read block Ay, into fast memory &- [\ fea-lg S b

// Read block By into fast memory & “3 eads ‘7’
// Do matrix multiply on the blocks
C[i*N + j] = C[i*N + j] + A[i*N + k] = B[k*N + J1;

// Write block C; back to slow memory -'b
coes bY “‘““‘ft?

COMP52315—Session 5: Cache blocking/tiling st “eocadr (/47,63" 18

How to improve reuse?

- Problem is that we move rows and columns into fast memory, and then
evict them

- Need way of keeping the loaded data in fast memory as long as
possible.

= tile iterations

N X N
// Treat A,B,C € (RbXb> .
// that is, N x N matrices where each entry is a b x b matrix.

for (int ii = 0; ii < N; ii++)
for (int 35 - 0; 33 < Nj 330+ g beredes
for (int kk = 0; kk < N; kk++) ‘,L,
for (int i_ = 0; i_ < b; i_++) ‘JL.
for (int j_ = 0; j_ < b; j_++) %M‘l’b -
for (int k_ = 0; k_ < b;
const int i = iixb +
const int j = jj*b +
const int k = kkxb +
Cli*n + j] = Cli*n +

} o) AN "L._:‘> ta: qf)h/t" n—-e,‘a-4A1:3 .

COMP52315—Session 5: Cache bloclfg/tiling 18

What did that do to the data movement?

m = Nn? each block of B is read N* times = N°b* = N*(n/N)? = Nn?

+ Nn? each block of A is read N° times

+2n? each block of C is read once and written once
= 2n*(N +1)

Hence
. 2n3 n
lim g = — — =

n—s00 m - 2ﬂ2(N+1) - N

- b > 2 so much better than previously. Can improve performance by
increasing b as long as blocks still fit in fast memory!

- Detailed analysis of blocked algorithms in Lam, Rothberg, and Wolf The
Cache Performance and Optimization of Blocked Algorithms (1991)

COMP52315—Session 5: Cache blocking/tiling 19

From model to machine characteristics

- Arbitrarily choose a “fast” algorithm to be > 50% peak, this requires
ftf<1+t—m1>§2tff<:>t—m1§1 C]Zt—m
ol o
- Again, approximate tpy, = 25, tf =1 q/
\)
= b~ q > 25.

F_/_J

- Need to hold all three b x b matrices in cache

= Need space for 3b? = 3 -25% = 1875 matrix entries, approximately
14.6KB of fast memory M,q:. (K}()QK = M(-é k,B

- This is smaller than L1, but larger than fits in registers.

L ‘L%ws 3

COMP52315—Session 5: Cache blocking/tiling 20

Is this the best we can do?

Theorem
Hong and Kung (1981) Any reorganization of thingorithm that only
exploits associativity has

q = O(\/ Mfast) L(W“an (_.Mayp(

and the number of data elements moved between slow and fast/memory

IS
n3 2. ...
Q
(\/ Mfast) () N
L’“js CW"“"— d"‘"l v
- Exact values for the bounds are not known, the best bounds are

provided by Smith and van de Geijn (2017) arXiv: 1702.02017
[cs.CC]

- The GotoBLAS/OpenBLAS approach approaches these bounds.

COMP52315—Session 5: Cache blocking/tiling 21

Matching reality with models

- | provide some sample code that implements this scheme

= Exercise 8.

https:
//teaching.wence.uk/comp52315/exercises/exercise08/

COMP52315—Session 5: Cache blocking/tiling 22

Is this the best we can do?

30 || —e— Triple loop
—.— Tiled
—e— Tiled packed
© 20 | | = Model
(@R
9
G
10 -
\

| | |
0 1,000 2,000 3,000
Matrix size

COMP52315—Session 5: Cache blocking/tiling 23

Is this the best we can do?

60| || —— Triple loop
- Tiled
—o— Tiled packed
» LO | || — Model
o —+— OpenBLAS
= ==== Machine peak
20 N
O — | | \ =
0 1,000 2,000 3,000
Matrix size

COMP52315—Session 5: Cache blocking/tiling 24

What accounts for this difference?

- Managed to get big matrices to behave like small ones with naive code.
= reaching in-cache performance of the starting point.
- For better results, need to

1. Block for registers and all levels of cache
2. Perform data-layout transformation to promote (better) vectorisation

- Will look more at data layout transforms next time.

COMP52315—Session 5: Cache blocking/tiling 25

- Loop tiling can significantly improve performance of nested loops.

- Particularly important to exploit data reuse.

- For the “last mile” we have to do more. Mostly the same idea, but
thinking hard about data layout and explicit vectorisation.

- Simple models can be used to motivate whether things are worth
trying.

COMP52315—Session 5: Cache blocking/tiling 26

