Session 5: Cache blocking/tiling

COMP52315: performance engineering

Lawrence Mitchell*

*lawrence.mitchell@durham.ac.uk

*Rech coste û hard.

"Shrulard te churgues"

Lawrence.mitchell@durham.ac.uk

*Shrulard te churgues

Lawrence.mitchell@durham.ac.uk

*Shrulard te churgues

Lawrence.mitchell@durham.ac.uk

*Shrulard te churgues

*Syenlifte coste ii "easy."

COMP52315—Session 5: Cache blocking/tiling

An exemplar problem

Derse linear algebra.

Matrix transpose

```
B_{ij} \leftarrow A_{ji} \quad A, B \in \mathbb{R}^{n \times n}
\text{double } *a, *b;
\text{for (int } i = 0; \ i < N; \ i++)
\text{for (int } j = 0; \ j < N; \ j++)
\text{b[i*N + j] = a[j*N + i];} \quad \text{fix } \text{for } \text{for
```

So far, we've talked about how to measure performance, and perhaps determine that it is bad.

 \Rightarrow what can we do about it?

Matrix transpose: simple performance model

Set up our expectation

- N^2 loads, N^2 stores, no compute
- ⇒ all we're doing is copying data
 - Hence we might expect to see performance close to that of the streaming memory bandwidth, independent of matrix size.

ideally, all our algorithms will non at permane intepent of

Matrix transpose: simple performance model

Set up our expectation

- N^2 loads, N^2 stores, no compute
- ⇒ all we're doing is copying data
 - Hence we might expect to see performance close to that of the streaming memory bandwidth, independent of matrix size.

What went wrong?


```
double *a, *b;
...
for (int i = 0; i < N; i++)
  for (int j = 0; j < N; j++)
   b[i*N + j] = a[j*N + i];</pre>
```

- We have streaming access to **b**, but stride-*N* access to **a**.
- If both matrices fit in cache, this is OK, and a reasonable model of time is $T_{\text{cache}} = N^2(t_{\text{read}} + t_{\text{write}})$.
- Note that the reads of a load a full cache line, but use only 8 bytes of it.
- Better model $T_{\text{mem}} = N^2(8t_{\text{read}} + t_{\text{write}})$

A picture

Cache locality

- Since we have strided access to **a**, we need to hold *LN* bytes in the cache to get any reuse, where *L* is the cache line size in. This is not possible for large matrices.
- A mechanism to fix this is to *reorder* the loop iterations to preserve spatial locality.

Idea

- Break loop iteration space into blocks
 - strip-mining
 - loop reordering

Strip mining

Break a loop into blocks of consecutive elements

Before

```
for ( int i = 0; i < N; i++ )
  a[i] = f(i);
```

After

```
for ( int ii = 0; ii < N; ii += stride)</pre>
  for ( int i = ii; i < min(N, ii + stride); i++)</pre>
    a[i] = f(i):
```

 Not that useful for just a single loop, although there are circumstances Ly compiler cost model is ocking/tiling where one might use it

COMP52315—Session 5: Cache blocking/tiling

Strip mining multiple loops

• Let's do the same for both loops of the transpose:

```
Before
 for (int i = 0; i < N; i++) -
   for (int j = 0; j < N; j++)
      a[i*N + j] = a[j*N + i];
After
 for (int ii = 0; ii < N; ii += stridei)</pre>
   for (int i = ii; i < min(N, ii+stridei); i++</pre>
      for (int jj = 0; jj < N; jj += stridej)</pre>
        for (int j = jj; j < min(N, jj+stridej); j++</pre>
          b[i*N + j] = a[j*N + i];
```

· Haven't yet made any change to the performance shill have some mueral mueral meral meral

COMP52315—Session 5: Cache blocking/tiling

Reorder loops

After permuting i and jj loops

```
for (int ii = 0; ii < N; ii += stridei)
for (int jj = 0; jj < N; jj += stridej)</pre>
     for (int i = ii; i < min(N, ii+stridei); i++)</pre>
        for (int j = jj; j < min(N, jj+stridej); j++)</pre>
           b[i*N + j] = a[j*N + i];
```

- Two free parameters stridei and stridej
- Need to choose these appropriately to levels in the cache hierarchy
- · Ideally block for L1, L2, L3, etc... wast people block jut

 · The extra logic adds some overhead
- The extra logic adds some overhead

Why is it "tiling"?

Sightly detricital for B.

Iteration over B.

0—	1	2	3	<u>/</u> ;	5	_6_	-7
8	9	10	11	× 12	13	14	-1 5
16	17	18	19	> 20	21	22	2 3
24	25	26	27	>28	29	30	-3 1
32	33	34	35	>36	37	38	-3 9
40	41	42	4 3	/ ;/;	4 5	46	-4 7
48	49	50	51	> 52	53	54	-5 5
56	57	58	59	6 0	61	62	-6 3

0 1	2 3	5 6 7
8 9 > 1	0 1 1 /12	2 13 14 15
16 17 1	8 19/ 26	21 22 23
24 25 2	26 27 28	3 <u>29</u> 30 31
3 2 33 3	34 25 34	5 37 38 39
3 2 33 3 4 0 41 4	34 25 34 12 43 44	5 37 38 39 4 45 46 47
3 2 33 3 40 41 4 48 49 5	34 25 36 32 43 44 50 51/52	5 37 38 39 4 45 46 47 2 53 54 55
3 2 33 3 40 41 4 48 49 5 56 57 5	34 25 36 42 43 44 50 51/ 52 58 59 66	+ 4J 40 1 /

Why is it "tiling"?

Iteration	over	Δ
ittiation	O V C I	∕⊓.

φ	1	7	3	4	5	6	7
8	9	10	<i>/</i> 11	1/2	1/3	14	15
16	/17	/18	/19	20	/21	22	23
24	25	26	27	28	29	30	31
32/	33 /	34	35 /	36/	37 /	38/	39
40	41/	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

	φ	1	7	3	4+	5	6	7
	8	/9	/10	/11	1 2	/13	14	/15
	16/	17/	18/	19	20/	21/	22/	23
	24	25	26	27	28	29	30	-3 1
	_							
	32	33	3/4	35	36	37	38	39
	3 2 40	33 /41	34 /42	35 43	3 6 44	37 45	28 46	39 /47
	3 2 40 48/	33 /41 49	34 /42 50/	35 43 51	3 6 44 52/	37 /45 53/	38 46 54	39 /47 55
20 20 20 20 20 20 20 20 20 20 20 20 20 2	3 2 40 48/ 56	33 /41 49 57	34 42 50 58	35 43 51 59	36 44 52/ 60	37 /45 53 61	28 46 54 62	39 /47 55 63

Does it work?

- Have a go, I provide some sample code for which you can tune the blocking parameters.
- \Rightarrow Exercise 7.

https:

//teaching.wence.uk/comp52315/exercises/exercise07/

A second problem

Still achvi research cree. Duta-novement + Slops.

Matrix-Matrix multiplication

$$C_{ij} \leftarrow C_{ij} + \sum_{k} A_{ik} B_{kj} \quad A, B, C \in \mathbb{R}^{n \times n}$$

$$\text{for (int } i = 0; \ i < n; \ i^{++})$$

$$\text{for (int } j = 0; \ j < n; \ j^{++})$$

$$\text{for (int } k = 0; \ k < n; \ k^{++})$$

$$C[i^{+}n + j] + A[i^{+}n + k] * B[k^{+}n + j];$$

$$C[i^{+}n + j] + A[i^{+}n + k] * B[k^{+}n + j];$$

Same story here (or at least it was in the 90s!).

Ct

A

Porter-duil A

for Hap-lifed.

(Another) simple model for computation

- Simple model of memory, two levels: "fast" and "slow"
- Initially all data in slow memory m number of data elements moved between fast and slow memory t_m time per slow memory operation

f number of flops

 $t_f \ll t_m$ time per flop \leftarrow \leftarrow q =: f/m average flops per slow memory access

Minimum time to solution (all data in fast memory)

Typical time

. Typical time
$$ft_f + mt_m = ft_f \left(1 + \frac{t_m}{t_f} \frac{1}{q_f}\right)$$
 . t_m/t_f property of hardware, q property of algorithm

COMP52315—Session 5: Cache blocking/tiling

Naïve matrix-multiply

```
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

for (int k = 0; k < n; k++)

C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];
```

- Algorithm does $2n^3 = \mathcal{O}(n^3)$ flops and touches $3 \cdot 8n^2$ bytes of memory
- q potentially O(n), arbitrarily large for large n. Let by the s

Naïve matrix-multiply

```
for (int i = 0; i < n; i++)
    (int i = 0; i < n; i++)

/ Read row i of A into fast memory

or (int j = 0; j < n; j++)

// Read C<sub>ij</sub> into fast memory

// Read column j of B into fast memory

for (int k = 0: k < n: k++)
  // Read row i of A into fast memory
  for (int j = 0; j < n; j++)
     for (int k = 0; k < n; k++)
       C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];
    // Write Cij back to slow memory entinks of sine 1.
```

Naïve matrix-multiply

Number of slow memory references

$$m = n^3$$
 each column of B is read n times
+ n^2 each row of A is read once
+ $2n^2$ each entry of C is read once and written once
= $(n^3 + 3n^2)$

Hence

$$\lim_{n \to \infty} q = \frac{f}{m} = \frac{2n^3}{(n^3 + 3n^2)} = 2$$

$$C_{ij} = \begin{bmatrix} C_{ij} \\ C_{ij} \end{bmatrix} + \begin{bmatrix} A_i \\ B_j \end{bmatrix}$$

From model to prediction

 So for a triply-nested loop structure, the best time to solution our model predicts is:

$$T = t_f f \left(1 + \frac{t_m}{2t_f} \right)$$

• Recall that on modern hardware, memory *latency* is around 200 cycles per cache line. So let's approximate $t_m \approx 200/8 = 25$, and say $t_f = 1$.

$$T = t_f f(1 + 25/2) = 13.5t_f f$$

- Maximally 7% peak. flogs
- This is only an estimate.

Measurement

- · Single core Intel i5-8259U. @ 3.6 4112
- 2 4-wide FMAs per cycle ⇒ 16 DP FLOPs/cycle.

 \Rightarrow Peak is 3.6 · 16 = 57.6 GFLOPs/s, model predicts 4.03GFLOPs/s.

How to improve reuse?

 Problem is that we move rows and columns into fast memory, and then evict them

```
    Need way of keeping the loaded data in fast memory as long as

                                            12 wales
       possible.
  ⇒ tile iterations.
 // Treat A, B, C \in (\mathbb{R}^{b \times b})^{N \times N}
 // that is, N \times N matrices where each entry is a b \times b matrix.
 for (int i = 0; i < N; i++)
    for (int j = 0; j < N; j++)
    // Read block C<sub>ij</sub> into fast memory
    for (int k = 0; k < n; k++)</pre>
        // Read block Aik into fast memory & \( \sigma^3 \)
        // Read block B_{kj} into fast memory    N^3   
        // Do matrix multiply on the blocks
        C[i*N + j] = C[i*N + j] + A[i*N + k] * B[k*N + j];
      // Write block Cij back to slow memory 🗻 📢
COMP52315—Session 5: Cache blocking/tiling
```

How to improve reuse?

- Problem is that we move rows and columns into fast memory, and then evict them
- Need way of keeping the loaded data in fast memory as long as possible.
- \Rightarrow tile iterations

```
// Treat A, B, C \in (\mathbb{R}^{b \times b})^{N \times N}
// that is, N \times N matrices where each entry is a b \times b matrix.
for (int ii = 0; ii < N; ii++)
  for (int jj = 0; jj < N; jj++)
    for (int kk = 0; kk < N; kk++)</pre>
        for (int i_ = 0; i_ < b; i_++)
for (int j_ = 0; j_ < b; j_++)
for (int k_ = 0; k_ < b; k_++) {
                  const int i = ii*b + i_;
                  const int j = jj*b + j_;
                  const int k = kk*b + k_;
                  C[i*n + j] = C[i*n + j] + A[i*n + k] * B[k*n + j];
```

What did that do to the data movement?

$$m = Nn^2$$
 each block of B is read N^3 times $\Rightarrow N^3b^2 = N^3(n/N)^2 = Nn^2 + Nn^2$ each block of A is read N^3 times $+2n^2$ each block of C is read once and written once $=2n^2(N+1)$

Hence

$$\lim_{n \to \infty} q = \frac{f}{m} = \frac{2n^3}{2n^2(N+1)} = \frac{n}{N} = b$$

- $b \gg 2$ so much better than previously. Can improve performance by increasing b as long as blocks still fit in fast memory!
- Detailed analysis of blocked algorithms in Lam, Rothberg, and Wolf The Cache Performance and Optimization of Blocked Algorithms (1991)

From model to machine characteristics

• Arbitrarily choose a "fast" algorithm to be > 50% peak, this requires

$$ft_f\left(1+\frac{t_m}{t_f}\frac{1}{q}\right)\leq 2t_ff\Leftrightarrow \frac{t_m}{t_f}\frac{1}{q}\leq 1\Leftrightarrow q\geq \frac{t_m}{t_f}$$
 • Again, approximate $t_m=25,\,t_f=1$

- $\Rightarrow b \approx q \geq 25$.
 - Need to hold all three $b \times \underline{b}$ matrices in cache
- \Rightarrow Need space for $3b^2 = 3 \cdot 25^2 = 1875$ matrix entries, approximately 14.6KB of fast memory M_{fast} . 14.6KB
 - This is smaller than L1, but larger than fits in registers.

Is this the best we can do?

Theorem

Hong and Kung (1981) Any reorganization of this algorithm that only exploits associativity has

$$q = \mathcal{O}(\sqrt{M_{fast}})$$

Stressen N 2-6~ Copposit wright

and the number of data elements moved between slow and fast memory is

$$\Omega\left(\frac{n^3}{\sqrt{M_{fast}}}\right)$$

lunge content factors

- Exact values for the bounds are not known, the best bounds are provided by Smith and van de Geijn (2017) arXiv: 1702.02017 [cs.CC]
- The GotoBLAS/OpenBLAS approach approaches these bounds.

Matching reality with models

- I provide some sample code that implements this scheme
- \Rightarrow Exercise 8.

https:

//teaching.wence.uk/comp52315/exercises/exercise08/

Is this the best we can do?

Is this the best we can do?

What accounts for this difference?

- · Managed to get big matrices to behave like small ones with naive code.
- ⇒ reaching in-cache performance of the starting point.
 - For better results, need to
 - 1. Block for registers and all levels of cache
 - 2. Perform data-layout transformation to promote (better) vectorisation
 - Will look more at data layout transforms next time.

Summary

- · Loop tiling can significantly improve performance of nested loops.
- Particularly important to exploit data reuse.
- For the "last mile" we have to do more. Mostly the same idea, but thinking hard about data layout and explicit vectorisation.
- Simple models can be used to motivate whether things are worth trying.